• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

Cooperative Beam Management for Cell-Free Multi-Layer Heterogeneous Network

研究課題

研究課題/領域番号 23K16870
研究種目

若手研究

配分区分基金
審査区分 小区分60060:情報ネットワーク関連
研究機関奈良先端科学技術大学院大学

研究代表者

Chen Na  奈良先端科学技術大学院大学, 先端科学技術研究科, 助教 (80838342)

研究期間 (年度) 2023-04-01 – 2026-03-31
研究課題ステータス 交付 (2023年度)
配分額 *注記
4,810千円 (直接経費: 3,700千円、間接経費: 1,110千円)
2025年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
2024年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
2023年度: 2,470千円 (直接経費: 1,900千円、間接経費: 570千円)
キーワードBeam Management / Deep Learning / Massive MIMO / IRS / Heterogeneous Network / Cell-Free Communication
研究開始時の研究の概要

The B5G/6G systems are confronted with high transmission requirements and a harsh wireless communication environment. This research considers a radio over fiber (RoF) supported multi-layer cell-free heterogeneous network (HetNet) architecture to achieve an efficient transmission in complex scenarios. We first propose the HetNet model and deep learning (DL) method for cooperative beam management considering the nonlinear optic fiber channel and the cell-free wireless channel, providing a possible solution for future wireless communication networks with high throughput and robustness.

研究実績の概要

This research focus on deep learning based heterogeneous network (HetNet) beam management. We aim at developing a deep learning empowered cooperative beam management scheme for the RIS and radio-over-fiber (RoF) and intelligent reflecting surface (IRS) assisted cell-free (CF) HetNet system. We also aim at carrying out a hardware demo with campus local 5G experiment network to confirm the model performance. Comparing with existing study, this is a comprehensive study on deep learning model design for complex communication system beam cooperation with demo implementation, which is of high importance for 5G/6G systems. We mainly did the following study in the past year:
1. We developed deep learning schemes for massive multiple-input multiple-output (mMIMO) beam training. Specifically, we introduced contrastive learning mechanism with Transformer model for reducing the training overhead and improve model efficiency.
2. We developed deep learning algorithms for IRS-assisted mMIMO communication. Specifically, we considered a practical semi-passive IRS design to collect the channel information. Then we designed hybrid convolutional neural network (CNN) encoder-based Transformer deep learning model for IRS beam selection. The model achieved high prediction performance and spectral efficiency.
3. We implemented some hardware demo for RIS. We designed LC-based IRS structure and mushroom style patch design for IRS. Besides, we measured the local 5G channel character and radio-over-fiber channel character.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

Based on the theoretic analysis of the IRS-assisted mMIMO system and algorithm simulation, we designed multiple effective deep learning models achieving high beam management accuracy and spectrum efficiency improvement for massive MIMO and IRS-assisted systems. More general distributed deep learning model design considering CF access is under process.
For hardware demo, we purchased RoF devices and improved demo system scale. We simulated the IRS hardware design with simulation. We also made some basic IRS hardware models and measured the reflection performance.
Overall, the research is progressing smoothly.

今後の研究の推進方策

In the next step, we will continue with the following 3 aspects:
1. We will continue with the RoF nonlinear character analysis. Specifically, cooperational effect of the multiple RoF links.
2. Based on the study on modeling the CF-IRS network, we will publish journal and conference papers. Specifically, we will discuss how to reduce the training overhead and de-centralized cooperation among network devices.
3. We will accomplish international cooperation and domestic cooperation with the hardware implementation of IRS and design our apporach with deep learning algorithm loaded. We plan to apply for patents about the new IRS model with deep learning algorithm design.

報告書

(1件)
  • 2023 実施状況報告書
  • 研究成果

    (10件)

すべて 2024 2023 その他

すべて 国際共同研究 (1件) 雑誌論文 (2件) (うち国際共著 2件、 査読あり 2件、 オープンアクセス 1件) 学会発表 (7件) (うち国際学会 5件、 招待講演 1件)

  • [国際共同研究] 北京郵電大学(中国)

    • 関連する報告書
      2023 実施状況報告書
  • [雑誌論文] Robust Beamforming for Reconfigurable Intelligent Surface-Assisted Multi-cell Downlink Transmissions2024

    • 著者名/発表者名
      Gao Hui、Yang Xiaoyu、Chen Na、Chen Shuo、Yang Yue、Yuen Chau
    • 雑誌名

      IEEE Transactions on Vehicular Technology

      巻: 1 号: 5 ページ: 1-13

    • DOI

      10.1109/tvt.2023.3346906

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / 国際共著
  • [雑誌論文] Spatial attention and quantization-based contrastive learning framework for mmWave massive MIMO beam training2023

    • 著者名/発表者名
      Jia Haohui、Chen Na、Urakami Taisei、Gao Hui、Okada Minoru
    • 雑誌名

      EURASIP Journal on Wireless Communications and Networking

      巻: 2023 号: 1 ページ: 1-28

    • DOI

      10.1186/s13638-023-02277-w

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / オープンアクセス / 国際共著
  • [学会発表] Deep Learning Based Massive Array Signal Processing in Wireless Communication Systems2024

    • 著者名/発表者名
      Chen Na
    • 学会等名
      the 2024 3rd International Workshop on Control, Communications and Multimedia (IWCCM 2024), co-host with the International Conference on Knowledge and Smart Technology (KST 2024)
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会 / 招待講演
  • [学会発表] Variable Multi-Band Metasurface Reflector with Controllable Direction Using Varactor Diodes Mounted Large-Via Mushroom-Type Structure2024

    • 著者名/発表者名
      Taisei Urakami, Tamami Maruyama, Akira Ono, Na Chen, and Minoru Okada
    • 学会等名
      18th European Conference on Antennas and Propagation (EuCAP 2024)
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会
  • [学会発表] バラクタダイオード装荷型マッシュルーム構造を用いた反射方向と周波数帯を考慮したメタサーフェス反射板2024

    • 著者名/発表者名
      浦上大世・丸山珠美・小野安季良・陳 娜・岡田 実
    • 学会等名
      信学技報, vol. 123, no. 396, MW2023-190, pp. 78-83, 2024年2月.
    • 関連する報告書
      2023 実施状況報告書
  • [学会発表] IRS-Assisted mmWave Massive MIMO Systems Beam Training with Hybrid CNN Encoder-based Transformer Deep Learning Model2023

    • 著者名/発表者名
      Taisei Urakami, Haohui Jia, Na Chen, and Minoru Okada
    • 学会等名
      2023 IEEE 98th Vehicular Technology Conference (VTC)
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会
  • [学会発表] Individual-Driven Spiking-Mixer Deep Learning Model for IRS-Assisted mmWave Systems Beam Training2023

    • 著者名/発表者名
      Taisei Urakami, Haohui Jia, Dafang Zhao, Na Chen, Minoru Okada
    • 学会等名
      2023 IEEE 11th Global Conference on Consumer Electronics (GCCE)
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会
  • [学会発表] Integrated Beamforming and Resource Allocation in RIS-Assisted mmWave Networks based on Deep Reinforcement Learning2023

    • 著者名/発表者名
      Di Chen, Hui Gao, Na Chen and Ruohan Cao
    • 学会等名
      2023 21st IEEE Interregional NEWCAS Conference (NEWCAS)
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会
  • [学会発表] Memory-Driven MLP-Mixerを用いたIntelligent Reflecting Surface支援ミリ波システムにおけるビーム予測に関する研究2023

    • 著者名/発表者名
      浦上大世・賈 昊暉・陳 娜・岡田 実
    • 学会等名
      信学技報, vol. 122, no. 411, MW2022-159, pp. 13-18, 2023年3月.
    • 関連する報告書
      2023 実施状況報告書

URL: 

公開日: 2023-04-13   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi