• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

On Optimal Transport-based Statistical Measures for Graph Structured Data and Applications

研究課題

研究課題/領域番号 23K16939
研究種目

若手研究

配分区分基金
審査区分 小区分61030:知能情報学関連
研究機関筑波大学

研究代表者

NGUYEN DAIHAI  筑波大学, システム情報系, 助教 (50968401)

研究期間 (年度) 2023-04-01 – 2026-03-31
研究課題ステータス 交付 (2023年度)
配分額 *注記
2,730千円 (直接経費: 2,100千円、間接経費: 630千円)
2025年度: 520千円 (直接経費: 400千円、間接経費: 120千円)
2024年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
2023年度: 1,300千円 (直接経費: 1,000千円、間接経費: 300千円)
キーワードGenerative models / Constrained domains / optimal transport / graph kernels / graph structured data
研究開始時の研究の概要

We design novel measures for graphs with the following advantages:
1) taking into account node features and global structures of graphs.
2) deriving valid kernels that can be used for kernel-based frameworks.
3) reducing the complexity of computing the pairwise distance or kernel matrices.

研究実績の概要

The research aims to develop optimal transport-based learning models for structured data, along with their related extensions and applications.

This year, our main focus has been on learning to generate structured data. Generating structured data, such as graphs, poses a significant challenge due to the constraints imposed on the generated samples. To address it, we formulated the problem of generating structured data as a distribution optimization problem on constrained domains. Then we developed a general framework based on the optimal transport theory to tackle this issue. We conducted an analysis of theoretical properties and convergence of the proposed, as well as experiments on synthetic and real world data sets to demonstrate its effectiveness in generating constrained samples.

現在までの達成度 (区分)
現在までの達成度 (区分)

1: 当初の計画以上に進展している

理由

We have achieved promising results in the topics of learning to generate structured data, with our research findings being published in top conferences and journals. Moving forward, we plan to further extend our research focus to include graph data and its applications.

今後の研究の推進方策

This year, our plan is to continue our efforts in developing optimal transport-based learning models tailored for graph-structured data, with a specific focus on their applications in Bioinformatics. Our research will encompass various domains within Bioinformatics, including molecular graphs, biological network data, and more.

報告書

(1件)
  • 2023 実施状況報告書
  • 研究成果

    (4件)

すべて 2023

すべて 雑誌論文 (2件) (うち査読あり 2件) 学会発表 (2件)

  • [雑誌論文] Mirror variational transport: a particle-based algorithm for distributional optimization on constrained domains2023

    • 著者名/発表者名
      Nguyen Dai Hai、Sakurai Tetsuya
    • 雑誌名

      Machine Learning

      巻: 112 号: 8 ページ: 2845-2869

    • DOI

      10.1007/s10994-023-06350-9

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり
  • [雑誌論文] Differentiable optimization layers enhance GNN-based mitosis detection2023

    • 著者名/発表者名
      Zhang Haishan、Nguyen Dai Hai、Tsuda Koji
    • 雑誌名

      Scientific Reports

      巻: 13 号: 1

    • DOI

      10.1038/s41598-023-41562-y

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり
  • [学会発表] Mirror variational transport: a particle-based algorithm for distributional optimization on constrained domains2023

    • 著者名/発表者名
      Nguyen Dai Hai
    • 学会等名
      the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD) 2023
    • 関連する報告書
      2023 実施状況報告書
  • [学会発表] On a linear fused Gromov-Wasserstein distance for graph structured data2023

    • 著者名/発表者名
      Nguyen Dai Hai
    • 学会等名
      the International Workshop on Mining and Learning with Graphs, the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD) 2023
    • 関連する報告書
      2023 実施状況報告書

URL: 

公開日: 2023-04-13   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi