• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

有機薄膜太陽電池におけるオフセットレス高効率電荷分離への挑戦

研究課題

研究課題/領域番号 23K17949
研究種目

挑戦的研究(萌芽)

配分区分基金
審査区分 中区分35:高分子、有機材料およびその関連分野
研究機関広島大学

研究代表者

尾坂 格  広島大学, 先進理工系科学研究科(工), 教授 (80549791)

研究期間 (年度) 2023-06-30 – 2025-03-31
研究課題ステータス 交付 (2023年度)
配分額 *注記
6,500千円 (直接経費: 5,000千円、間接経費: 1,500千円)
2024年度: 3,250千円 (直接経費: 2,500千円、間接経費: 750千円)
2023年度: 3,250千円 (直接経費: 2,500千円、間接経費: 750千円)
キーワード有機半導体 / 有機薄膜太陽電池 / 電荷分離 / 電圧損失
研究開始時の研究の概要

有機薄膜太陽電池の高効率化には、究極的には、p型とn型有機半導体間のエネルギー準位のオフセットをゼロ(オフセットレス)にして電圧を最大化し、なおかつその状況で効率的に電荷分離を引き起こして大きな電流を得るという、従来の原理を打ち破らなければならない。そこで本研究では、この「オフセットレス高効率電荷分離」の実現に向け、革新的な有機半導体および有機半導体混合系の創出に目指す。

研究実績の概要

OPVではp型とn型の有機半導体の接触によりp/n間で電荷が移動し、解離することで自由電荷が生成する。p/n間のLUMOまたはHOMO準位のオフセットエネルギーが、この一連の電荷分離過程のドライビングフォースとなる。一方、オフセットエネルギーは、この一連の電荷分離過程において失われるため、電圧損失の要因にもなる。そのため、OPVは開放電圧が低く、高効率化の大きなボトルネックとなっている。そこで、本研究では、オフセットエネルギーゼロ(オフセットレス)で効率的な電荷分離を引き起こす、革新的な有機半導体の開発を目指している。
有機半導体に生じる励起子が電荷分離するためにオフセットエネルギーが必要な理由は、ホールと電子が強く束縛されているからである。つまり、HOMOとLUMOが分子内の異なる部位に分離していれば、ホールはHOMO上に電子はLUMO上に存在するので、空間的にホールと電子が離れてクーロン力(励起子束縛エネルギー)が弱まり、格段に電荷分離しやすくなるのではないかと考えた。そこで、まず有機半導体として低分子n型材料に着目し、電子供与性(D)部位と電子求引性(A)部位が立体的にねじれながら連結した分子(MY2)を設計し、合成した。この分子はDFT計算により、HOMOがD部位、LUMOがA部位に分離することが分かった。また一方で、同様のビルディングユニットで構成され、HOMOとLUMOが分離せず同様に分布した分子(MY1)も設計、合成した。
これらの分子の吸収スペクトルを測定したところ、MY2はMY1に比べて、長波長ピークの強度が顕著に低下しており、分子内CT性が増大していることが分かった。これはDFT計算結果と一致しており、分子内においてHOMOとLUMOが分離していることを裏付ける結果となった。また、MY2はMY1に比べて、励起子束縛エネルギーが小さいことも明らかになった。

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

目的を達成するための分子を設計し、合成することに成功した。さらに、合成した分子について種々測定することで、期待したとおりの物性を有することが分かった。以上の点から、研究は順調に進展していると判断できる。

今後の研究の推進方策

今後は合成した分子を用いた光電変換素子を作製、評価し、実際にオフセットレス状態で効率的に電荷分離を示すかどうか実証する。さらに、より効率的に電荷分離しうる分子の設計と合成を進めていく予定である。

報告書

(1件)
  • 2023 実施状況報告書

URL: 

公開日: 2023-07-04   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi