研究課題/領域番号 |
23K21719
|
補助金の研究課題番号 |
21H03545 (2021-2023)
|
研究種目 |
基盤研究(B)
|
配分区分 | 基金 (2024) 補助金 (2021-2023) |
応募区分 | 一般 |
審査区分 |
小区分62010:生命、健康および医療情報学関連
|
研究機関 | 九州工業大学 |
研究代表者 |
竹本 和広 九州工業大学, 大学院情報工学研究院, 教授 (40512356)
|
研究期間 (年度) |
2021-04-01 – 2026-03-31
|
研究課題ステータス |
交付 (2024年度)
|
配分額 *注記 |
17,550千円 (直接経費: 13,500千円、間接経費: 4,050千円)
2025年度: 2,990千円 (直接経費: 2,300千円、間接経費: 690千円)
2024年度: 2,990千円 (直接経費: 2,300千円、間接経費: 690千円)
2023年度: 2,990千円 (直接経費: 2,300千円、間接経費: 690千円)
2022年度: 2,990千円 (直接経費: 2,300千円、間接経費: 690千円)
2021年度: 5,590千円 (直接経費: 4,300千円、間接経費: 1,290千円)
|
キーワード | 深層ニューラルネットワーク / 機械学習セキュリティ / ネットワーク科学 / 大規模言語モデル / 医用画像診断 |
研究開始時の研究の概要 |
深層ニューラルネットワーク(DNN)は画像認識能力の高さから医用画像診断に応用され始めているが、DNNは敵対的攻撃(外部からの攻撃)に 対して脆弱性を示すという問題がある。この問題はDNNを医用画像診断として社会応用する上で大きな障壁となる。そこで本研究課題では、複雑ネットワークの理論を応用することで、医用画像診断のために開発されたDNNの信頼性評価や安全性向上のためのアルゴリズム開発とその応用を目的とする。敵対的攻撃に対するDNNのロバスト性(信頼性)評価と安全性向上のための計算手法を開発し、安全で信頼できる医療AIの開発に貢献する。
|
研究実績の概要 |
本研究課題は、複雑ネットワーク理論を応用し、医療AIの信頼性と安全性向上のための計算手法を開発することで、安全で信頼できる医療AIの開発に貢献することを目的としている。また、大規模言語モデル(LLM)の近年の台頭から、LLMの医療応用におけるバイアスと倫理的判断の理解を深めるため、LLMの政治的バイアスと道徳的判断に関する研究も行った。 昨年度、社会ネットワークにおける意見ダイナミクスが敵対的攻撃に対して脆弱であることを示した。今年度は、ネットワーク構造が意見ダイナミクスに影響を与えることを考慮し、敵対的攻撃を緩和できるネットワーク構造について検討した(Chiyomaru and Takemoto 2023)。ノード次数の不均一性が敵対的攻撃を大幅に緩和することを明らかにしたが、大規模で密なネットワークでは限定的になることも見出した。 LLMの医療応用における公平性と信頼性を確保するため、ChatGPTの政治的バイアスを再評価した(Fujimoto and Takemoto 2023)。ChatGPTは以前に想定されていたよりも政治的バイアスが少ないことがわかったが、使用言語やジェンダー・人種の設定がバイアスを引き起こす可能性があることが明らかになった。 LLMが医療分野に深く統合されるにつれ、LLMがどのように道徳的判断を下すかを理解することが重要になっている。モラルマシンフレームワークを用いて、LLMの倫理的意思決定の傾向を調査し、人間の選好と比較した(Takemoto 2024)。LLMと人間の選好は概ね一致していたが、一部のLLMは明確な逸脱を示し、より妥協のない決定を下す可能性が示唆された。これらの知見は、LLMの医療応用における倫理的課題を理解する上で重要である。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
複雑ネットワークの理論を応用した医療AIの信頼性評価と安全性向上のための計算手法の開発を着実に進めるとともに、近年の大規模言語モデル(LLM)の発展も踏まえ、LLMの医療応用に関連する政治的バイアスと道徳的判断の研究にも取り組み、LLMの政治的バイアスと道徳的判断の評価方法を確立した。深層ニューラルネットワークの医用画像診断のみならず、LLMを医療分野で適切かつ安全に活用するための基盤を整えつつある。
|
今後の研究の推進方策 |
次年度以降も、基本的には当初の研究実施計画通りに進める。医療AIの信頼性評価と安全性向上のための計算手法の開発と応用を引き続き行うとともに、LLMのバイアスと道徳的判断の評価方法の改善と、それらが医療分野に与える影響の調査を進める。さらに、敵対的攻撃の脆弱性に対する防御戦略の検討を深め、医療AIのセキュリティの向上を目指す。
|