• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

サイバーグ・ウイッテン理論の進化と4次元微分トポロジーへの応用

研究課題

研究課題/領域番号 23K22394
補助金の研究課題番号 22H01123 (2022-2023)
研究種目

基盤研究(B)

配分区分基金 (2024)
補助金 (2022-2023)
応募区分一般
審査区分 小区分11020:幾何学関連
研究機関京都大学

研究代表者

加藤 毅  京都大学, 理学研究科, 教授 (20273427)

研究期間 (年度) 2022-04-01 – 2027-03-31
研究課題ステータス 交付 (2024年度)
配分額 *注記
15,470千円 (直接経費: 11,900千円、間接経費: 3,570千円)
2026年度: 3,380千円 (直接経費: 2,600千円、間接経費: 780千円)
2025年度: 2,470千円 (直接経費: 1,900千円、間接経費: 570千円)
2024年度: 3,380千円 (直接経費: 2,600千円、間接経費: 780千円)
2023年度: 2,470千円 (直接経費: 1,900千円、間接経費: 570千円)
2022年度: 3,770千円 (直接経費: 2,900千円、間接経費: 870千円)
キーワード指数定理 / ゲージ理論 / 非可換幾何幾何学 / サイバーグ・ウィッテン理論 / 微分トポロジー / バウアー・古田理論 / サイバーグ・ウイッテン不変量 / fiber bundle / サイバーグ・ウイッテン理論 / 非コンパクト多様体
研究開始時の研究の概要

コンパクト4次元多様体の被覆空間上でモノポール写像の構成を行いさらにその写像度を計算することが目的である。assembly写像とよばれる指数写像はK群の間の写像として与えられ、指数に関する高次の情報を含む。その手法を、被覆空間上のモノポール写像に適用する。古田による10/8予想の証明を、被覆空間上で展開できれば、Singer予想と組み合わせることでaspherical10/8不等式を示すことができることが分かっていた。本研究プロジェクトは、無限被覆空間上でL^2ベッチ数を用いた10/8不等式を導くこと、それを用いてaspherical10/8不等式を導くことが最終的な目標である。

研究実績の概要

解析的手法としてはBaraglia-Konno(A gluing formula for families Seiberg-Witten invariants, Geometry and Topology,24-3,1381-1456,2020)が導入した族のmod2 SW理論に、高次元微分トポロジーにおける手術理論の手法を組み合わせる事で実施する。族の4次元多様体は、トータル空間自身は5次元以上なので高次元微分トポロジーの手法が適用できる。今野・中村らとのこれまでの共同研究により、4次元多様体をファイバーとするコンパクトな位相的ファイバー束で、全空間は可微分だがファイバー束として微分構造を許容しない例を構成した。これはコンパクトのケースでは初めての例と思われる。この研究を発展させることで、4次元多様体をファイバーとするコンパクトな可微分ファイバー束の対で、位相的ファイバー束として互いに同型だが、可微分な同型を許容しない例を見つけた。この例も、この成果はProceedings of AMSに出版された。コンパクトのケースでは初めての例と思われる。
次に、サイバーグ・ウイッテン理論におけるsimple type予想は、非自明な不変量を与えるようなモジュライ空間のvirtual 次元に関する非常に一般的かつ難問である。これまでの研究成果として、Nakamura-Yasuiらと、mod2でsimple type予想を広い4次元多様体のクラスに対して示すことができていた。T.Kato, N.Nakamura, K.Yasui, The simple type conjecture for mod 2 Seiberg-Witten invariantsJ. Eur. Math. Soc. 25, 4869-4877 (2023). 今後は、これをmod p versionに拡張することで、mod p simple type予想に挑戦する. 現在のところある程度の成果があるので、さらにそれを発展させていく。

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

現在のところ、研究は順調に進展している。

今後の研究の推進方策

今後は、以下の研究を計画している。
(1) サイバーグ・ウイッテン理論におけるsimple type予想は、モジュライ空間のvirtual 次元に関する非常に一般的かつ難問である。それに対する知見を広めるために、mod pでsimple type予想に挑戦する。
(2) 非コンパクト空間上でのゲージ理論について、計算可能な手法を開発するために、被覆空間上でのl^{\infty}_S値の幾何解析を進展させる。

報告書

(1件)
  • 2022 実績報告書
  • 研究成果

    (6件)

すべて 2023 2022 その他

すべて 国際共同研究 (1件) 雑誌論文 (2件) (うち査読あり 1件、 オープンアクセス 1件) 学会発表 (1件) (うち国際学会 1件、 招待講演 1件) 図書 (1件) 備考 (1件)

  • [国際共同研究] レーゲンスブルグ大学(ドイツ)

    • 関連する報告書
      2022 実績報告書
  • [雑誌論文] Upper bounds for virtual dimensions of Seiberg-Witten moduli spaces2023

    • 著者名/発表者名
      T.Kato, D.Kishimoto, N.Nakamura, K. Yasui
    • 雑誌名

      arXiv

      巻: 2111.15201v2 ページ: 1-20

    • 関連する報告書
      2022 実績報告書
  • [雑誌論文] The simple type conjecture for mod 2 Seiberg-Witten invariants2022

    • 著者名/発表者名
      Kato Tsuyoshi、Nakamura Nobuhiro、Yasui Kouichi
    • 雑誌名

      Journal of the European Mathematical Society

      巻: - 号: 12 ページ: 4869-4877

    • DOI

      10.4171/jems/1297

    • 関連する報告書
      2022 実績報告書
    • 査読あり / オープンアクセス
  • [学会発表] Covering monopole map and aspherical 10/8-conjecture2023

    • 著者名/発表者名
      T. Kato
    • 学会等名
      Conference `Geometric Analysis' at Universitat Regensburg
    • 関連する報告書
      2022 実績報告書
    • 国際学会 / 招待講演
  • [図書] Dynamics of the Box-Ball System with Random Initial Conditions via Pitman's Transformation2023

    • 著者名/発表者名
      D.Croydon, T.Kato,M.Sasada,S.Tsujimoto
    • 総ページ数
      99
    • 出版者
      Memoirs of the American Mathematical Society
    • ISBN
      9781470456337
    • 関連する報告書
      2022 実績報告書
  • [備考] Conference, Geometric Analysis

    • URL

      https://ammann.app.uni-regensburg.de/conferences/2023geomana/

    • 関連する報告書
      2022 実績報告書

URL: 

公開日: 2022-04-19   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi