研究課題/領域番号 |
23K22825
|
補助金の研究課題番号 |
22H01555 (2022-2023)
|
研究種目 |
基盤研究(B)
|
配分区分 | 基金 (2024) 補助金 (2022-2023) |
応募区分 | 一般 |
審査区分 |
小区分21060:電子デバイスおよび電子機器関連
|
研究機関 | 徳島大学 |
研究代表者 |
藤方 潤一 徳島大学, ポストLEDフォトニクス研究所, 教授 (00869159)
|
研究分担者 |
岩崎 拓哉 国立研究開発法人物質・材料研究機構, ナノアーキテクトニクス材料研究センター, 独立研究者 (50814274)
石川 靖彦 豊橋技術科学大学, 工学(系)研究科(研究院), 教授 (60303541)
高原 淳一 大阪大学, 大学院工学研究科, 教授 (90273606)
河野 行雄 中央大学, 理工学部, 教授 (90334250)
|
研究期間 (年度) |
2022-04-01 – 2025-03-31
|
研究課題ステータス |
交付 (2024年度)
|
配分額 *注記 |
17,420千円 (直接経費: 13,400千円、間接経費: 4,020千円)
2024年度: 6,240千円 (直接経費: 4,800千円、間接経費: 1,440千円)
2023年度: 4,160千円 (直接経費: 3,200千円、間接経費: 960千円)
2022年度: 7,020千円 (直接経費: 5,400千円、間接経費: 1,620千円)
|
キーワード | テラヘルツ / グラフェンFET / メタサーフェスアンテナ / ゲルマニウム光変調器 / 光電波接続 / グラフェン / フランツ・ケルディッシュ効果 / THz検出 / シリコンフォトニクス集積回路 / 光・電磁波融合 |
研究開始時の研究の概要 |
本研究は高移動度グラフェンをTHz周波数帯メタサーフェス・アンテナ構造と組合せ、さらに受信信号をグラフェンFETにより増幅する。前記のように増幅された受信信号を利用して、シリコンフォトニクスにおいて最も低消費電力で高速化が期待される超小型ゲルマニウム光変調器を研究開発し、グラフェンFETと電気接続出来るようヘテロジニアス集積を行う。これによりTHz帯での高速無線信号を光信号に変換し、低電力かつ大容量な無線―光変換が可能であることを検証する。
|
研究実績の概要 |
グラフェンTHz検出器に関しては、高品質h-BN上に積層したグラフェン層に対して、仕事関数の異なる金属電極層を接合することによりPN接合構造を作製するプロセスを確立した。また、バックゲート電極により電圧印加をすることにより、グラフェン層の電荷中性点を確認し、バックゲート電圧によりグラフェン層の電荷中性点付近にフェルミレベルを制御することにより、赤外光による受信動作を検証した。これにより、金属電極積層構造の最適化により、THz検出が可能なデバイス構造を実現出来ることを検証した。また、THz検出用のアンテナ構造に関しては、金属メタサーフェス構造を設計最適化することにより、高効率なTHz受信動作が実現可能なことを検証すると共に、シリコン誘電体からなるトポロジカルTHz導波路の設計検討を行い、THz波の高効率な閉じ込め構造を検証した。 ゲルマニウム光変調器に関しては、0.8Vppの世界最高レベルの低電圧駆動で100Gbps動作を実証すると共に、85℃での56Gbps動作を実証した。すなわち、ゲルマニウム光変調器が低消費電力かつ高効率に電圧信号を光信号に変換可能なことを実証した。また、ゲルマニウム光変調器が高効率な光受信器として機能することを検証した。すなわち、フランツ・ケルディッシュ効果とゲルマニウム層内でのアバランシェ増倍効果を発現することに成功し、0V印加時に比較して5dB程度の高効率光受信動作を実証した。従って、THz電磁波信号を受信後、ゲルマニウム光変調器・ゲルマニウム光受信器と電気接続可能なように集積化することにより、高効率・低消費電力で遅延時間の非常に小さいTHz-光信号変換が可能であることを検証した。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
グラフェンTHz検出器に関しては、当初の計画通りTHz受信アンテナ構造の設計および試作を行うと共に、THzアンテナ構造を金属電極として適用したグラフェンPN接合の作製・赤外光受信動作を実証している。また、ゲルマニウム光変調器に関しては、1V以下の世界最高レベルの低電圧駆動時において、100Gbpsの高速光変調動作を実証しており、THz検出器とゲルマニウム光変調器をグラフェンFETを介して接続することにより、THz電磁波信号とシリコンフォトニクス光集積回路をシームレスに接続可能な性能を実証している。さらに、ゲルマニウム光変調器は、光受信器としても高性能であることを検証し、高速かつ広波長帯域に光受信器として動作することを実証している。以上の成果により、THz-光融合においてグラフェンTHz検出器とシリコンフォトニクス素子であるゲルマニウム光変調器・受信器とのシームレスな接続が有効であることを検証しているため。
|
今後の研究の推進方策 |
物質・材料研究機構の岩崎が、高移動度グラフェンを利用した素子構造・電極構造を最適化する。さらに、大阪大学・高原がTHz受信時において高効率なアンテナ構造として、グラフェンとメタサーフェス構造を利用した高効率なTHz受信器構造を設計・試作する。試作したTHz受信器に関して、中央大学・河野が、Beyond5G通信での利用が期待されている300GHzあるいは600GHz帯でのTHz受信動作を検証する。さらに、物質・材料研究機構の岩崎がグラフェンFET増幅素子構造を検討し、THz受信時の起電力の増幅機能検証を行う。 上記の高効率THz受信器からの増幅信号を光信号に変換する素子として、ゲルマニウム光変調器に関しては、昨年度までに徳島大学・藤方および豊橋技術科学大学・石川によって実証した100Gbaud高速ゲルマニウム光変調素子をさらに低電圧化するため、素子設計を徳島大学・藤方が行い、プロセス開発を豊橋技術科学大学・石川が行う。さらに、徳島大学・藤方がTHzグラフェン受信器とゲルマニウム光変調器の集積プロセスを開発する。
|