| 研究課題/領域番号 |
23K25156
|
| 補助金の研究課題番号 |
22H03902 (2022-2023)
|
| 研究種目 |
基盤研究(B)
|
| 配分区分 | 基金 (2024) 補助金 (2022-2023) |
| 応募区分 | 一般 |
| 審査区分 |
小区分90020:図書館情報学および人文社会情報学関連
|
| 研究機関 | 熊本大学 |
研究代表者 |
Majumdar Rwito 熊本大学, 半導体・デジタル研究教育機構, 准教授 (30823348)
|
| 研究分担者 |
Flanagan Brendan 京都大学, 国際高等教育院, 特定准教授 (00807612)
緒方 広明 京都大学, 学術情報メディアセンター, 教授 (30274260)
李 慧勇 九州大学, 情報基盤研究開発センター, 助教 (60913910)
|
| 研究期間 (年度) |
2024-04-01 – 2025-03-31
|
| 研究課題ステータス |
完了 (2024年度)
|
| 配分額 *注記 |
17,680千円 (直接経費: 13,600千円、間接経費: 4,080千円)
2024年度: 5,590千円 (直接経費: 4,300千円、間接経費: 1,290千円)
2023年度: 4,030千円 (直接経費: 3,100千円、間接経費: 930千円)
2022年度: 8,060千円 (直接経費: 6,200千円、間接経費: 1,860千円)
|
| キーワード | GOAL / Self Direction Skills / Learning Analytics / AI in Education / DAPER model / LAreflecT / Learning Habits / Collaborative learning / Quantified Self / DAPER |
| 研究開始時の研究の概要 |
Learners need to be trained to be self-directed in their learning and daily activities. This research focuses on developing digital learning environments that trace learners' behaviors and provide them functionalities to develop such self-direction skills by analysis of those data.
|
| 研究実績の概要 |
Data-driven learning technologies require a holistic vision to balance learning experiences as well as system optimization, keeping in mind the various needs of different stakeholders. This project focused on the development of learners' self-directed learning skills and built various tools and functions to support them with data-driven technologies. In the final year, the project prepared and submitted various research outcomes related to the evaluation of the effectiveness of the interventions designed, and newly found patterns of learner behaviors while interacting in the data-driven learning environment. The findings also prompted the development of improved functionalities in the system, for instance, building the habit dashboard in the GOAL system, an automatic data-driven grouping feature in the GLOBE module for supporting collaborative learning, and the initial prototype of the LA-ReflecT system for multimodal learning analytics of micro-learning tasks. Apart from Japanese schools and universities, some of the built e-learning systems were implemented in different geographies and academic contexts. An actual field study in international educational institutions opened up collaborative research. There were consistent outreach activities, including workshops in an international conference (Embodied@ICCE2024) and a public e-learning symposium, which was supported by this funding.
|