• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

ラマン/蛍光同時観察可能な電子線励起マルチモーダル高分解能イオンイメージング

研究課題

研究課題/領域番号 23K26569
補助金の研究課題番号 23H01876 (2023)
研究種目

基盤研究(B)

配分区分基金 (2024)
補助金 (2023)
応募区分一般
審査区分 小区分30020:光工学および光量子科学関連
研究機関静岡大学

研究代表者

川田 善正  静岡大学, その他部局等, 理事 (70221900)

研究分担者 居波 渉  静岡大学, 電子工学研究所, 教授 (30542815)
研究期間 (年度) 2023-04-01 – 2026-03-31
研究課題ステータス 交付 (2024年度)
配分額 *注記
18,850千円 (直接経費: 14,500千円、間接経費: 4,350千円)
2025年度: 4,550千円 (直接経費: 3,500千円、間接経費: 1,050千円)
2024年度: 6,240千円 (直接経費: 4,800千円、間接経費: 1,440千円)
2023年度: 8,060千円 (直接経費: 6,200千円、間接経費: 1,860千円)
キーワード光学顕微鏡 / イオンイメージング / 電子顕微鏡 / ラマン分光 / マルチモーダル計測 / イオンセンサー / 細胞 / イオンチャネル
研究開始時の研究の概要

本研究では、イオン感応膜上の電荷検出に集束電子線を用いることにより、ナノスケールの分解能をもつイオンイメージングシステムを実現するとともに、レーザー走査顕微鏡と融合させることにより、ラマン分析画像や蛍光分析画像が同時取得可能なマルチモーダル顕微鏡システムを開発することを目的とする。ナノスケールの局所的なイオン分布を測定することができれば、神経信号の伝達、筋肉の収縮、酵素の活性化などの生命現象をイオンチャンネルレベルで解析することが可能となる。とくにラマン分析や蛍光分析を同時に行うことにより、イオンチャンネルに作用する物質の同定ができ、イオン変化と物質相互作用の詳細を解明することが期待できる。

研究実績の概要

本研究では、イオン感応膜上の電荷検出に集束電子線を用いることにより、ナノスケールの分解能をもつイオンイメージングシステムを実現するとともに、レーザー走査顕微鏡と融合させることにより、ラマン分析画像や蛍光分析画像が同時取得可能なマルチモーダル顕微鏡システムを開発することを目的とする。細胞は内部のイオン濃度を一定に保つとともに、イオンチャンネルからのイオン流入出や小胞などの内部器官からの放出などにより活動電位を誘起し、情報伝達を行なっている。したがって、ナノスケールの局所的なイオン分布を測定することができれば、神経信号の伝達、筋肉の収縮、酵素の活性化などの生命現象をイオンチャンネルレベルで解析することが可能となる。とくにラマン分析や蛍光分析を同時に行うことにより、イオンチャンネルに作用する物質の同定ができ、イオン変化と物質相互作用の詳細を解明することが期待できる。
令和5年度は、基礎システムと数値解析結果の比較検討からシステムの問題点を明らかにするとともに、その解決方法を検討し、高い空間分解能と感度を有するイオンセンサーを設計、試作。イオンチャンネルをモデル化した脂質二重層膜におけるイオン検出の感度、空間分解能を評価し、その結果をもとにHeLaなど、実際の生きた細胞の観察を行い、そのシステムの性能を評価を行った。電子線検出型のイオンセンサーの基礎実験システムを構築し、イオン感応膜の構成、電子線照射による電荷検出の原理検証、感度、イオン分布の検出の検証などを実施した。50nm程度の厚みのSi3N4基板をイオン感応膜として使用し、SiO2を絶縁膜、n型半導体の多層膜をベースとし、膜厚、半導体内の不純物濃度等による検出電流、空間分解能などを評価し、最適な膜構成を検討した。

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

本研究で開発する電子線検出によるイオン分布のナノイメージングシステムは、 これまでのイオンセンサの空間分解能の限界を飛躍的に向上させることが可能な大きなブレークスルーとなりうる技術である。本シーズ技術の超解像光ナノイメージング法は、光の回折限界による制限を受けず、飛躍的に高い空間分解能を実現することが可能である。また励起電子ビームのための真空側と試料側を分離することができるため、試料側には真空や金属膜の蒸着による修飾などは全く必要なく、液中や大気中など通常の光学顕微鏡と同様の環境で使用することが可能である。イオン感応膜の面内には微細構造を形成せず画素構造を必要としないため、加工技術による制限もない。本システムが実現できれば、細胞表面のイオンチャネルのダイナミクスを直接可視化することができ、それらの機能、ネットワークを明らかにすることができる。
令和5年度は、基礎システムと数値解析結果の比較検討からシステムの問題点を明らかにするとともに、その解決方法を検討し、高い空間分解能と感度を有するイオンセンサーを設計、試作。イオンチャンネルをモデル化した脂質二重層膜におけるイオン検出の感度、空間分解能を評価し、その結果をもとにHeLaなど、実際の生きた細胞の観察を行い、そのシステムの性能を評価を行った。電子線検出型のイオンセンサーの基礎実験システムを構築し、イオン感応膜の構成、電子線照射による電荷検出の原理検証、感度、イオン分布の検出の検証などを実施した。50nm程度の厚みのSi3N4基板をイオン感応膜として使用し、SiO2を絶縁膜、n型半導体の多層膜をベースとし、膜厚、半導体内の不純物濃度等による検出電流、空間分解能などを評価し、最適な膜構成を検討した。

今後の研究の推進方策

令和5年度に試作した基礎システムによる標準試料の測定結果と数値解析結果を詳細に比較検討し、システムの問題点を明らかにするとともに、その解決方法を検討及びシステムの改良し、本システムで実現可能な空間分解能、感度などを評価する。これらの結果から膜構造の解析を行い、 最適な膜構造を検討する。システム全体の課題の洗い出しと改良を進めることにより、高い空間分解能と感度を有するイオンセンサーを実現する。 開発した超解像度イオンイメージングシステムに、ラマンおよび蛍光分析可能なレーザー走査顕微鏡を融合し、マルチモーダルデータを取得可能な顕微鏡システムを実現する。開発するイオンイメージングシステムは、倒立型の電子顕微鏡を用い、イオン感応膜に収束電子線を照射する。 感応膜より上部は、フリースペースとなっているため、正立型のレーザー走査顕微鏡を組み込むことが可能である。レーザー走査顕微鏡とイオンイメージングのための電子顕微鏡の軸合わせ調整機構、観察位置一致のための試料台駆動機構および制御ソフトウェアの開発などを実施する 。電子顕微鏡およびレーザー走査顕微鏡の軸合わせのための標準試料としては、電子線励起およびレーザー励起可能なナノダイヤモンドを使用する。人工的な資質二重層膜を作製し、それにイオンチャンネルを低濃度で分散させ、生物細胞の標準試料とする。人工的に分散したイオンチャンネル近傍のイオン分布を測定し、生物試料観察における本センサーシステムの分解能、感度などを評価する。その結果をもとにHeLaなど、実際の生きた細胞の観察を行い、そのシステムの性能を評価する。 さらに 、その機能を利用した全く新しい革新的な機能性材料の開発にもつながる。

報告書

(1件)
  • 2023 実績報告書
  • 研究成果

    (2件)

すべて 2023

すべて 雑誌論文 (1件) 学会発表 (1件)

  • [雑誌論文] Autofluorescence imaging enhanced by deep-ultraviolet surface plasmon resonance for label-free bio-sensing2023

    • 著者名/発表者名
      K. Hosomi., C. N. H. Che Lah., Hirofumi Morisawa., K. Kobayashi., Yoshiya Tanaka A. Ono Wataru Inami., & Yoshimasa Kawata.
    • 雑誌名

      Proceedings Volume 12608, Biomedical Imaging and Sensing Conference; 1260817 (2023)

      巻: 12608 ページ: 1260817-1260817

    • DOI

      10.1117/12.3007931

    • 関連する報告書
      2023 実績報告書
  • [学会発表] シリコンナノ構造による表面プラズモン共鳴を用いた深紫外光検出器の高感度化2023

    • 著者名/発表者名
      田中 悠一朗、細見 圭、小野 篤史、居波 渉、川田 善正
    • 学会等名
      一般社団法人 レーザー学会学術講演会第44回年次大会
    • 関連する報告書
      2023 実績報告書

URL: 

公開日: 2023-04-18   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi