研究課題/領域番号 |
23K28149
|
補助金の研究課題番号 |
23H03459 (2023)
|
研究種目 |
基盤研究(B)
|
配分区分 | 基金 (2024) 補助金 (2023) |
応募区分 | 一般 |
審査区分 |
小区分61030:知能情報学関連
小区分60030:統計科学関連
合同審査対象区分:小区分60030:統計科学関連、小区分61030:知能情報学関連
|
研究機関 | 九州大学 |
研究代表者 |
池田 大輔 九州大学, システム情報科学研究院, 准教授 (00294992)
|
研究分担者 |
大石 桂一 九州大学, 経済学研究院, 教授 (10284605)
姫 艶彦 城西国際大学, 経営情報学部, 助教 (20962864)
原口 健太郎 西南学院大学, 商学部, 准教授 (40846523)
|
研究期間 (年度) |
2023-04-01 – 2027-03-31
|
研究課題ステータス |
交付 (2024年度)
|
配分額 *注記 |
16,120千円 (直接経費: 12,400千円、間接経費: 3,720千円)
2026年度: 3,770千円 (直接経費: 2,900千円、間接経費: 870千円)
2025年度: 5,330千円 (直接経費: 4,100千円、間接経費: 1,230千円)
2024年度: 4,030千円 (直接経費: 3,100千円、間接経費: 930千円)
2023年度: 2,990千円 (直接経費: 2,300千円、間接経費: 690千円)
|
キーワード | 極性判定 / トーン判定 / 事前学習モデル / 説明可能性 / 深層学習 |
研究開始時の研究の概要 |
極性とは、文がある対象に対し肯定的か否定的かを表し、極性判定とは、例えば、商品レビューの場合、商品に対しレビューが肯定的か否定的かを判断する。 レビューは短文で、極性判断も容易だが、本研究では有価証券報告書の将来に関する見通しを対象に極性判定を行う。対象文書は文、段落、節の構造を持ち、比較的長い文書である。 また、業績を良く見せたいなど、隠れた意図も存在することがある。さらに、このような文書は投資に用いられることを考えると説明可能性の向上も重要である。そこで「このような文書に対する説明可能性の高い極性判定が可能か?」という問いに答えることが本研究の目的である。
|