• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

相互作用のボトルネックと集団行動の創発

研究課題

研究課題/領域番号 23KF0108
研究種目

特別研究員奨励費

配分区分基金
応募区分外国
審査区分 小区分61040:ソフトコンピューティング関連
研究機関東京大学

研究代表者

池上 高志  東京大学, 大学院総合文化研究科, 教授 (10211715)

研究分担者 CROSSCOMBE MICHAEL  東京大学, 大学院総合文化研究科, 外国人特別研究員
研究期間 (年度) 2023-07-26 – 2026-03-31
研究課題ステータス 交付 (2023年度)
配分額 *注記
2,100千円 (直接経費: 2,100千円)
2025年度: 600千円 (直接経費: 600千円)
2024年度: 700千円 (直接経費: 700千円)
2023年度: 800千円 (直接経費: 800千円)
キーワードCollective intelligence / Collective dynamics / emergent behavior / neuroevolution / simulation
研究開始時の研究の概要

The main goals of this project are: 1) To study the impact of spatial constraints and information bottlenecks on collective behaviour, to improve our understanding of the necessary conditions for collective intelligence; 2) To develop a new framework for the evolution of collective behaviours which incorporates constraints observed in living systems; 3) To demonstrate the validity of this approach by evolving new collective behaviours in simulation.

研究実績の概要

This year we have developed a simulation environment to facilitate the evolution of artificial neural networks (neuroevolution) to infer a general model of collective behaviour exhibited by a target living system’s observed dynamics. In this case, our simulation environment uses collective behaviour data obtained from recordings of real ant colony dynamics. This is then used to automatically evolve neural network topologies which attempt to reproduce the general behaviours observed in living systems. This framework can be applied to any living system whereby the observable dynamics can be represented as a time series of 2-dimensional positional data.

So far, we have submitted an extended abstract about the simulation environment which we intend to make available to the research community.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

At the ALIFE2023 conference (hosted by Prof. Iizuka at Hokkaido University), our paper on the results of the information bottleneck approach was accepted for an oral presentation. Our overall research plan is making good progress.

今後の研究の推進方策

From here, we are already investigating methods to evolve more complex neural network topologies which are suitable for capturing the complex dynamics of living systems. First, we will redesign the current reward function to ensure that the general dynamics of the living system being modelled are accurately reproduced for learning. Then, extending existing algorithms for topological neuroevolution (NEAT, WANNs), we will evolve networks with more sophisticated internal architectures that might eventually evolve internal state representations. To do this, we will no longer stick to a strictly feed-forward architecture but instead allow the evolutionary process to use recurrent connections and additional activation functions in tandem. We expect this will produce more accurate dynamics.

報告書

(1件)
  • 2023 実施状況報告書
  • 研究成果

    (3件)

すべて 2024 2023

すべて 雑誌論文 (1件) (うち査読あり 1件) 学会発表 (2件) (うち国際学会 2件)

  • [雑誌論文] Imprecise evidence in social learning2024

    • 著者名/発表者名
      Zixuan Liu, Michael Crosscombe and Jonathan Lawry
    • 雑誌名

      Swarm Intelligence

      巻: 18 号: 1 ページ: 1-27

    • DOI

      10.1007/s11721-024-00238-7

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり
  • [学会発表] On the Existence of Information Bottlenecks in Living and Non-Living Systems2023

    • 著者名/発表者名
      Michael Crosscombe and Hiroki Sato
    • 学会等名
      ALIFE 2023
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会
  • [学会発表] Emergence of Differentiation of Deterministic/Stochastic Behavior in Ants’ Collectives2023

    • 著者名/発表者名
      Norihiro Maruyama, Michael Crosscombe, Shigeto Dobata, Takashi Ikegami
    • 学会等名
      ALIFE 2023
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会

URL: 

公開日: 2023-07-27   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi