研究課題/領域番号 |
23KF0203
|
研究種目 |
特別研究員奨励費
|
配分区分 | 基金 |
応募区分 | 外国 |
審査区分 |
小区分28020:ナノ構造物理関連
|
研究機関 | 東京大学 |
研究代表者 |
野村 政宏 東京大学, 生産技術研究所, 教授 (10466857)
|
研究分担者 |
DIEGO MICHELE 東京大学, 生産技術研究所, 外国人特別研究員
|
研究期間 (年度) |
2023-11-15 – 2025-03-31
|
研究課題ステータス |
中途終了 (2023年度)
|
配分額 *注記 |
2,000千円 (直接経費: 2,000千円)
2025年度: 500千円 (直接経費: 500千円)
2024年度: 1,000千円 (直接経費: 1,000千円)
2023年度: 500千円 (直接経費: 500千円)
|
キーワード | Nanophononics / Nanomechanics / Phonon engineering / Phononic crystal / Phononic metamaterial / Phononic nanocavity / BrillouinLightScattering / Genetic algorithm |
研究開始時の研究の概要 |
This research aims to investigate new photonic/phononic devices for their potential as key building blocks of quantum networks. We pursue new phononic phenomena in hybrid resonators, made of phononic crystals coupled with piezoelectric transducers, with diamond structures as the main target.
|
研究実績の概要 |
- Theoretical design and simulations of a hybrid double diamond-piezoelectric phononic nanocavity in which the piezoelectric cavity is used to activate modes in the diamond nanoresonator - Optimization of the clean room fabrication process for piezoelectric (lithium niobate) and hybrid piezoelectric/Silicon nanostructures - Theoretical design, clean room fabrication and experimental characterization (Vector Network Analyzer) of Gigahertz interdigital transducers on a piezoelectric material (lithium niobate). This is use to excite Gigahertz acoustical phonons in the piezoelectric material - Theory, clean room fabrication and experimental validation (Brillouin light scattering) of a highly anisotropic two-dimensional Silicon phononic structure designed through genetic algorithm optimization
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
2: おおむね順調に進展している
理由
The project is proceeding simultaneously on all three main pillars: (i) theory (development of the genetic algorithm in combination with finite element simulations for the design of new types of nanomechanical cavities, including piezoelectric/diamond and piezoelectric/silicon hybrid devices), (ii) clean room fabrication (optimization of the fabrication processes of lithium niobate piezoelectric material, deposition of interdigital transducers on lithium niobate and fabrication of piezoelectric/Silicon hybrid structures) and (iii) experimental characterization (installation and use of the vector network analyzer and optimization of an optical set up for Brillouin light scattering). Two works are completed and currently under review in two journals.
|
今後の研究の推進方策 |
As a short-term goal (in the next few months) is the experimental characterization through vector network analyzer of hybrid nanostructures made of piezoelectric material and Silicon using interdigital transducers on the piezoelectric material to excite and detect acoustical waves and structural resonant modes. This could include both one-dimensional devices (such as nano-cavities) and two-dimensional devices (such as phononic crystals and metasurfaces). Next we will move on to low-temperature characterization of these nanoresonators, so as to increase the lifetime of the resonant modes of such structures. Then, in collaboration with other groups, all the described processes of design optimization and experimental characterization will be applied for piezoelectric/diamond hybrid devices.
|