• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

熱帯地域における洪水および堆積物応答時間推定のための機械学習ベースモデルの開発

研究課題

研究課題/領域番号 23KF0258
研究種目

特別研究員奨励費

配分区分基金
応募区分外国
審査区分 小区分04010:地理学関連
研究機関鳥取大学

研究代表者

Haregeweyn N  鳥取大学, 国際乾燥地研究教育機構, 教授 (30754692)

研究分担者 ALEMU DAGNENET  鳥取大学, 国際乾燥地研究教育機構, 外国人特別研究員
研究期間 (年度) 2023-11-15 – 2026-03-31
研究課題ステータス 交付 (2023年度)
配分額 *注記
2,000千円 (直接経費: 2,000千円)
2025年度: 500千円 (直接経費: 500千円)
2024年度: 1,000千円 (直接経費: 1,000千円)
2023年度: 500千円 (直接経費: 500千円)
キーワードPeak flow / Lag time / Time of concentration / Machine learning / Sediment concentration
研究開始時の研究の概要

This research aims to get insights into the diverse hydrological response time estimation methods employed across different climatic regions. This can be achieved through global scale review of literatures complimenting with analysis of peak river flow and suspended sediment observations from 15 contrasting tropical watersheds found in Ethiopia. Ultimately it aims to develop accurate regional-scale flow and sediment response-time estimation Machine Learning (ML) models.

研究実績の概要

Global Hydrological response time estimation methods were reviewed and archived from 80 published articles to survey and evaluate the accuracy of existing methods across different climatic region. Relationship between catchment size, slope, rainfall intensity, dominant soil texture and land use versus measured time of concentration were analyzed. Additionally, event-based rainfall-peak flow data maintained from our previous study under contrasting climates of Ethiopia were analyzed to determine lag time of peak flows and time of concentration. To support these activities satellite images and laptop computer were purchased.

現在までの達成度 (区分)
現在までの達成度 (区分)

3: やや遅れている

理由

The necessary preparations to conduct the field work in Ethiopia in the coming summer are slightly delayed due to security travel restriction to the study sites. Efforts are being made to accelerate the preparation so that the necessary data could be collected as per the initial plan.

今後の研究の推進方策

The future research plan comprises four key activities: 1) Conducting rainy season field surveys in Ethiopia to collect data on peak flow, soil moisture, and sediment concentration for hydrological model validation. 2) Compiling biophysical, hydrological, and meteorological data from various sources to enhance the watershed database. 3) Evaluating the accuracy of existing methods for estimating hydrological response times across different climates. 4) Developing machine learning models to predict flood and sediment response times in tropical regions, enhancing predictive accuracy and efficiency

報告書

(1件)
  • 2023 実施状況報告書

URL: 

公開日: 2023-11-17   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi