• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

V2X通信に基づく自動運転車の協調計画

研究課題

研究課題/領域番号 23KJ0391
研究種目

特別研究員奨励費

配分区分基金
応募区分国内
審査区分 小区分60060:情報ネットワーク関連
研究機関東京大学

研究代表者

林 鵬飛  東京大学, 情報理工学系研究科, 特別研究員(DC2)

研究期間 (年度) 2023-04-25 – 2025-03-31
研究課題ステータス 交付 (2023年度)
配分額 *注記
1,800千円 (直接経費: 1,800千円)
2024年度: 900千円 (直接経費: 900千円)
2023年度: 900千円 (直接経費: 900千円)
キーワードAutonomous Driving / Collision Avoidance / Path Planning / Model Predictive Control / Optimization
研究開始時の研究の概要

This research proposal seeks to develop a cooperative driving system using multiple simulation platforms and the V2X technique. It incorporates safe-critical motion planning to assess collision risks and a unique virtual scene construction for validating and providing feedback to the decision layer.

研究実績の概要

Since 2023, I have four first-authored papers that are accepted in prestigious conferences and journals, showcasing my contributions to autonomous driving technologies. These publications include innovative strategies for occlusion-aware path planning, interactive speed optimization in potential field-based path planning, and advanced lane-changing tactics considering time-to-collision. Notably, I've contributed to developing strategies for lane-changing, which reduced both maneuver length and path curvature by 27.1% and 56.1%, respectively, thus improving driving efficiency and passenger comfort. My work in occlusion-aware path planning has provided more effective solutions for unexpected vehicle intrusions, enhancing overall road safety.

現在までの達成度 (区分)
現在までの達成度 (区分)

2: おおむね順調に進展している

理由

I have currently completed about half of the intended progress. However, I have encountered computational power limitations in the aspect of Virtual Scene Construction. This challenge arises mainly due to the high complexity and resource-intensive nature of accurately simulating and rendering real-world traffic scenarios in virtual environments. Tools like SUMO and CARLA require significant processing capabilities to simulate intricate vehicle dynamics and environmental conditions effectively. Despite optimization efforts, the current computational resources are proving to be a bottleneck, hindering the seamless integration of dynamic potential fields with real-time virtual scenario construction and thereby impacting the overall progression of the research plan.

今後の研究の推進方策

My future research direction will focus on enhancing autonomous vehicle (AV) systems by integrating various components for comprehensive decision-making and action.I am going to build a rule-adherence decision making that uses responsibility-sensitive safety (RSS) to ensure that decisions are made following traffic rules and ethical standards. It involves using a Reinforcement Learning (RL) agent and input from a human driving expert to refine the policy network for smarter and safer decision-making.

報告書

(1件)
  • 2023 実施状況報告書
  • 研究成果

    (8件)

すべて 2024 2023

すべて 雑誌論文 (3件) (うち国際共著 1件、 査読あり 3件、 オープンアクセス 2件) 学会発表 (4件) (うち国際学会 4件) 学会・シンポジウム開催 (1件)

  • [雑誌論文] Clothoid Curve-based Emergency-Stopping Path Planning with Adaptive Potential Field for Autonomous Vehicles2024

    • 著者名/発表者名
      Lin Pengfei、Javanmardi Ehsan、Tsukada Manabu
    • 雑誌名

      IEEE Transactions on Vehicular Technology

      巻: 1 号: 7 ページ: 1-16

    • DOI

      10.1109/tvt.2024.3380745

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / 国際共著
  • [雑誌論文] Zero-Knowledge Proof of Traffic: A Deterministic and Privacy-Preserving Cross Verification Mechanism for Cooperative Perception Data2023

    • 著者名/発表者名
      Tao Ye、Javanmardi Ehsan、Lin Pengfei、Nakazato Jin、Jiang Yuze、Tsukada Manabu、Esaki Hiroshi
    • 雑誌名

      IEEE Access

      巻: 11 ページ: 142846-142861

    • DOI

      10.1109/access.2023.3343405

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / オープンアクセス
  • [雑誌論文] Fostering Fuzzy Logic in Enhancing Pedestrian Safety: Harnessing Smart Pole Interaction Unit for Autonomous Vehicle-to-Pedestrian Communication and Decision Optimization2023

    • 著者名/発表者名
      Chauhan Vishal、Chang Chia-Ming、Javanmardi Ehsan、Nakazato Jin、Lin Pengfei、Igarashi Takeo、Tsukada Manabu
    • 雑誌名

      Electronics

      巻: 12 号: 20 ページ: 4207-4207

    • DOI

      10.3390/electronics12204207

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / オープンアクセス
  • [学会発表] Potential Field-based Path Planning with Interactive Speed Optimization for Autonomous Vehicles2023

    • 著者名/発表者名
      Pengfei Lin
    • 学会等名
      Annual Conference of the IEEE Industrial Electronics Society (IECON) 2023
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会
  • [学会発表] Occlusion-Aware Path Planning for Collision Avoidance: Leveraging Potential Field Method with Responsibility-Sensitive Safety2023

    • 著者名/発表者名
      Pengfei Lin
    • 学会等名
      IEEE International Conference on Intelligent Transportation Systems (ITSC) 2023
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会
  • [学会発表] Time-To-Collision-Aware Lane-Change Strategy Based on Potential Field and Cubic Polynomial for Autonomous Vehicles2023

    • 著者名/発表者名
      Pengfei Lin
    • 学会等名
      IEEE Intelligent Vehicles (IV) Symposium 2023
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会
  • [学会発表] zk-PoT: Zero-Knowledge Proof of Traffic for Privacy Enabled Cooperative Perception2023

    • 著者名/発表者名
      Tao Ye
    • 学会等名
      IEEE Consumer Communications & Networking Conference (CCNC) 2023
    • 関連する報告書
      2023 実施状況報告書
    • 国際学会
  • [学会・シンポジウム開催] IEEE Intelligent Vehicles (IV) Symposium 20232023

    • 関連する報告書
      2023 実施状況報告書

URL: 

公開日: 2023-04-26   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi