• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

モデル予測制御と強化学習を応用したビルエネルギーシステムの運用最適化手法の開発

研究課題

研究課題/領域番号 23KJ0513
研究種目

特別研究員奨励費

配分区分基金
応募区分国内
審査区分 小区分23020:建築環境および建築設備関連
研究機関九州大学

研究代表者

GAO YUAN  九州大学, カーボンニュートラル・エネルギー国際研究所, 助教

研究期間 (年度) 2023-04-25 – 2025-03-31
研究課題ステータス 中途終了 (2023年度)
配分額 *注記
1,800千円 (直接経費: 1,800千円)
2024年度: 900千円 (直接経費: 900千円)
2023年度: 900千円 (直接経費: 900千円)
キーワードReinforcement learning / Deep learning / Net zero energy / Renewable energy
研究開始時の研究の概要

This study uses the deep learning model to improve the control accuracy of the MPC algorithm and achieves the best control effect through the combination of the two prediction models. Through our research, it is believed that the automatic control of the energy system can be realized.

研究実績の概要

The research content mentioned in the application topic has been essentially completed to a high standard. Based on the renewable building energy system that actually exists in Tsukuba, Ibaraki Prefecture, Japan, we explored various possibilities of employing Model Predictive Control and Reinforcement Learning algorithms for its operational control. Deep learning models play a significant role in the prediction of renewable energy systems. The initial concern involves the interpretability of deep learning applications. When employing deep learning predictive models in renewable energy systems, the interpretability of these models becomes crucial. Consequently, system owners need to evaluate the computational process of the model and make informed final decisions.

現在までの達成度 (区分)
現在までの達成度 (区分)

1: 当初の計画以上に進展している

理由

The applicant has basically completed research on actual renewable energy systems, and has published a total of 12 high-level papers in related fields in Applied Energy, Energy and other journals, all of which the applicant is the first author.

The cooperative company has begun implementation testing of the algorithm.

今後の研究の推進方策

The next aspect concerns the practical deployment and application of fault diagnosis models within the system. Our study, using data from air conditioning systems as an example, aims to reduce the parameter count of the proposed model without compromising the accuracy of fault diagnosis. This approach is intended to enhance computational speed in engineering applications.

In summary, the applicant has successfully achieved the established objectives set forth in the application topic and has also produced numerous scholarly papers.

In the future, we will further improve the efficiency of the algorithm based on previous research and conduct more actual case analysis and implementation.

報告書

(1件)
  • 2023 実施状況報告書
  • 研究成果

    (6件)

すべて 2024 2023

すべて 雑誌論文 (6件) (うち国際共著 6件、 査読あり 6件)

  • [雑誌論文] Successful application of predictive information in deep reinforcement learning control: A case study based on an office building HVAC system2024

    • 著者名/発表者名
      Gao Yuan、Shi Shanrui、Miyata Shohei、Akashi Yasunori
    • 雑誌名

      Energy

      巻: 291 ページ: 130344-130344

    • DOI

      10.1016/j.energy.2024.130344

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / 国際共著
  • [雑誌論文] Adversarial discriminative domain adaptation for solar radiation prediction: A cross-regional study for zero-label transfer learning in Japan2024

    • 著者名/発表者名
      Gao Yuan、Hu Zehuan、Shi Shanrui、Chen Wei-An、Liu Mingzhe
    • 雑誌名

      Applied Energy

      巻: 359 ページ: 122685-122685

    • DOI

      10.1016/j.apenergy.2024.122685

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / 国際共著
  • [雑誌論文] Interpretable deep learning for hourly solar radiation prediction: A real measured data case study in Tokyo2023

    • 著者名/発表者名
      Gao Yuan、Miyata Shohei、Akashi Yasunori
    • 雑誌名

      Journal of Building Engineering

      巻: 79 ページ: 107814-107814

    • DOI

      10.1016/j.jobe.2023.107814

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / 国際共著
  • [雑誌論文] Automated fault detection and diagnosis of chiller water plants based on convolutional neural network and knowledge distillation2023

    • 著者名/発表者名
      Gao Yuan、Miyata Shohei、Akashi Yasunori
    • 雑誌名

      Building and Environment

      巻: 245 ページ: 110885-110885

    • DOI

      10.1016/j.buildenv.2023.110885

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / 国際共著
  • [雑誌論文] Spatio-temporal interpretable neural network for solar irradiation prediction using transformer2023

    • 著者名/発表者名
      Gao Yuan、Miyata Shohei、Matsunami Yuki、Akashi Yasunori
    • 雑誌名

      Energy and Buildings

      巻: 297 ページ: 113461-113461

    • DOI

      10.1016/j.enbuild.2023.113461

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / 国際共著
  • [雑誌論文] How to improve the application potential of deep learning model in HVAC fault diagnosis: Based on pruning and interpretable deep learning method2023

    • 著者名/発表者名
      Gao Yuan、Miyata Shohei、Akashi Yasunori
    • 雑誌名

      Applied Energy

      巻: 348 ページ: 121591-121591

    • DOI

      10.1016/j.apenergy.2023.121591

    • 関連する報告書
      2023 実施状況報告書
    • 査読あり / 国際共著

URL: 

公開日: 2023-04-26   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi