• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

機械学習における最適化問題の効率的解法

研究課題

研究課題/領域番号 23KJ1458
研究種目

特別研究員奨励費

配分区分基金
応募区分国内
審査区分 小区分60030:統計科学関連
研究機関大阪大学

研究代表者

新村 亮介  大阪大学, 基礎工学研究科, 特別研究員(DC2)

研究期間 (年度) 2023-04-25 – 2024-03-31
研究課題ステータス 中途終了 (2023年度)
配分額 *注記
2,000千円 (直接経費: 2,000千円)
2024年度: 1,000千円 (直接経費: 1,000千円)
2023年度: 1,000千円 (直接経費: 1,000千円)
キーワードスパース推定 / 近接勾配法 / 最適化 / 項目反応理論 / クラスタリング / 凸関数
研究開始時の研究の概要

本研究では,スパース推定などの凸最適化問題を効率的に解くための新しい手法を提案する.提案手法は変数選択を同時に行うことができ,問題の次元が小さくなるため,効率的に解を求められるようになる.また,提案手法によって解が得られることを証明し,理論的な保証を行う.さらに,グループlassoなどの実際のスパース推定問題に適用し,効率的に解が得られることを示す.

研究実績の概要

本研究では,スパース推定問題の効率的解法の構築を行った.
一般に変数選択とモデルの学習を同時にできるスパース推定の最適化問題では,近接勾配法や近接ニュートン法といった手法が適用されている.前者では,解への収束が遅いため,時間がかかってしまい,後者では,収束は早いがグループlassoなどの問題では効率が悪くなってしまう.本研究では機械学習の中でも特に,スパース推定の最適化問題を近接勾配法の収束先を求める非線形方程式に帰着することにより,推定値に0が多いというスパース性を利用して,効率的に解を求めるアルゴリズムを提案した.また,目的関数が凸関数である場合について,提案手法を用いることで高速に解が得られることを証明した.さらに,グループlassoなどのスパース推定に適用し,実際に数値実験を行うことで提案手法の有効性を示した.
また,多次元項目反応理論モデルのための単純行列を推定する方法を開発した.提案した方法は,各テスト項目を単一の潜在特性に対応させることができ,結果の解釈を容易にする.また,対応する潜在特性に基づいてテスト項目をクラスタリングすることができる.提案手法の基本的な考え方は,因子分析で提案されているようなprenet(product-based elastic net)ペナルティを用いることである.数値実験により,特に被験者数が少ない場合に,既存のlassoのようなL1ペナルティを用いる方法と比較して,特に被験者数が少ない場合に有効であることを示した.

報告書

(1件)
  • 2023 実績報告書
  • 研究成果

    (3件)

すべて 2024 2023

すべて 雑誌論文 (2件) (うち査読あり 2件、 オープンアクセス 1件) 学会発表 (1件)

  • [雑誌論文] Newton-Type Methods with the Proximal Gradient Step for Sparse Estimation2024

    • 著者名/発表者名
      Shimmura Ryosuke、Suzuki Joe
    • 雑誌名

      Operations Research Forum

      巻: 5 号: 2 ページ: 1-1

    • DOI

      10.1007/s43069-024-00307-x

    • 関連する報告書
      2023 実績報告書
    • 査読あり
  • [雑誌論文] Estimation of a Simple Structure in a Multidimensional IRT Model Using Structure Regularization2023

    • 著者名/発表者名
      Shimmura Ryosuke、Suzuki Joe
    • 雑誌名

      Entropy

      巻: 26 号: 1 ページ: 44-44

    • DOI

      10.3390/e26010044

    • 関連する報告書
      2023 実績報告書
    • 査読あり / オープンアクセス
  • [学会発表] 近接勾配法による変数選択を用いたニュートン法2023

    • 著者名/発表者名
      新村 亮介
    • 学会等名
      第37回計算機統計学会
    • 関連する報告書
      2023 実績報告書

URL: 

公開日: 2023-04-26   更新日: 2024-12-25  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi