• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

Improving High-Performance Neural Network-based Sequence Classifiers

研究課題

研究課題/領域番号 26730093
研究種目

若手研究(B)

配分区分基金
研究分野 知覚情報処理
研究機関九州大学

研究代表者

Frinken Volkmar (FRINKEN Volkmar)  九州大学, システム情報科学研究科(研究院, 学術研究員 (70724417)

研究期間 (年度) 2014-04-01 – 2016-03-31
研究課題ステータス 中途終了 (2015年度)
配分額 *注記
3,770千円 (直接経費: 2,900千円、間接経費: 870千円)
2015年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
2014年度: 2,600千円 (直接経費: 2,000千円、間接経費: 600千円)
キーワードリカレントニューラルネットワーク / 深層学習 / 時系列データ解析 / ネットワーク解析 / Machine Learning / Sequence Classification / Deep Learning / Pattern Recognition / LSTM Neural Networks
研究実績の概要

In the project, Improving High-Performance Neural Network-based Sequence Recognizers, I focused my effort to understand the internal dynamics of LSTM recurrent neural networks. During the course of the year, I have done my investigations along two major directions. The first research direction considered the node activations of the neural networks during the recognition of a sequence. For simple tasks, such as counting peaks in a sequence, the activation levels of the LSTM nodes can be interpreted fairly easily. Unfortunately, the same cannot be said for more complex networks and tasks, such as handwriting recognition. We could make an observation that only a subset of the nodes in the hidden layer takes on meaningful values, whereas the remaining nodes constantly increase their stored value, regardless of the input. Our hope was to detect the minimal number or meaningful hidden nodes for different tasks and establish a form of intrinsic complexity dimensionality for different databases. Unfortunately, the results were inconclusive.

The second research direction was to increase the layers for LSTM based handwriting recognition in a systematic way. We carefully analyzed various topologies with different number of hidden layers and different node activation functions. The results indicate that these meta-parameters have a significant influence. Our findings have been published and can help to improve future systems.

報告書

(2件)
  • 2015 実績報告書
  • 2014 実施状況報告書
  • 研究成果

    (2件)

すべて 2015

すべて 雑誌論文 (1件) (うち査読あり 1件、 謝辞記載あり 1件) 学会発表 (1件)

  • [雑誌論文] Deep BLSTM Neural Networks for Unconstrained Continuous Handwritten Text Recognition2015

    • 著者名/発表者名
      Volkmar Frinken and Seiichi Uchida
    • 雑誌名

      Proceedings of 13th Int. Conf. Document Analysis and Recognition

      巻: 1 ページ: 1-5

    • 関連する報告書
      2015 実績報告書
    • 査読あり / 謝辞記載あり
  • [学会発表] Deep BLSTM Neural Networks for Unconstrained Continuous Handwritten Text Recognition2015

    • 著者名/発表者名
      Volkmar Frinken
    • 学会等名
      Int'l Conf. on Document Analysis and Recognition (ICDAR)
    • 発表場所
      Gammarth, Tunisia
    • 年月日
      2015-08-23 – 2015-08-26
    • 関連する報告書
      2014 実施状況報告書

URL: 

公開日: 2014-04-04   更新日: 2017-01-06  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi