研究課題/領域番号 |
26730114
|
研究種目 |
若手研究(B)
|
配分区分 | 基金 |
研究分野 |
知能情報学
|
研究機関 | 東京大学 |
研究代表者 |
松島 慎 東京大学, 大学院情報理工学系研究科, 常勤講師 (90721837)
|
研究期間 (年度) |
2014-04-01 – 2018-03-31
|
研究課題ステータス |
完了 (2017年度)
|
配分額 *注記 |
3,770千円 (直接経費: 2,900千円、間接経費: 870千円)
2016年度: 1,560千円 (直接経費: 1,200千円、間接経費: 360千円)
2015年度: 1,170千円 (直接経費: 900千円、間接経費: 270千円)
2014年度: 1,040千円 (直接経費: 800千円、間接経費: 240千円)
|
キーワード | 機械学習 / 凸最適化 / スパース学習 / 大規模学習 / SVM / データマイニング / ビッグデータ / 国際情報交換 |
研究成果の概要 |
本研究では第一にSVMやロジスティック回帰などを包含する正則化付き経験リスク最初化問題について、複数のプロセスが非同期的に動作することで最適化を行うことができるスキームを提案、効率的な分散学習が行えることを理論・実験の両面から示した。 第二に、従来では数TBのデータを用いなければ学習できないスパース学習について、扱うデータ量を抑えながらスパース学習が可能であるスキームを提案した。提案手法はテキストデータやDNA配列データなどでは部分文字列の特徴量を用いた学習に関して、接尾辞配列などの効率的なデータ構造を用いる事によって、部分文字列に対応する特徴を効率よく抽出する事が可能であることを示した。
|