研究課題/領域番号 |
26870821
|
研究種目 |
若手研究(B)
|
配分区分 | 基金 |
研究分野 |
知能情報学
数学基礎・応用数学
|
研究機関 | 電気通信大学 |
研究代表者 |
西山 悠 電気通信大学, 大学院情報理工学研究科, 助教 (60586395)
|
研究期間 (年度) |
2014-04-01 – 2017-03-31
|
研究課題ステータス |
完了 (2016年度)
|
配分額 *注記 |
2,600千円 (直接経費: 2,000千円、間接経費: 600千円)
2016年度: 910千円 (直接経費: 700千円、間接経費: 210千円)
2015年度: 650千円 (直接経費: 500千円、間接経費: 150千円)
2014年度: 1,040千円 (直接経費: 800千円、間接経費: 240千円)
|
キーワード | カーネル法 / カーネルベイズ推論 / 無限分解可能分布 / 畳み込み無限分解可能カーネル / 共役カーネル / 畳み込みトリック / 安定分布 / 一般化双曲型分布 / 正定値カーネル / 特性的カーネル / カーネル平均 / カーネルベイズ / 一般化双曲系型分布 / Convolution Trick / セミパラメトリックカーネルベイズ / Levy Khintchine公式 |
研究成果の概要 |
機械学習でカーネル法とベイズ推論を組み合わせたカーネルベイズ推論が研究されている.カーネルベイズ推論は確率分布の再生核ヒルベルト空間における特徴量である「カーネル平均」を推論する.確率分布からカーネル平均への写像が単射となる正定値カーネルを特性的カーネルという.特性的カーネルはカーネル平均を利用するアルゴリズムで重要な役割を果たす.特性的カーネルと無限分解可能分布の関係を明らかにする研究成果として,有界連続で対称な無限分解可能密度関数は特性的カーネルとして使えることを示した.さらにカーネル法の効率的計算を可能にする関係式にカーネルトリックがあるが,これを拡張した畳み込みトリックを提案した.
|