研究概要 |
多次元巡回形ディジタルフィルタを状態空間モデルを用いて有限語長で実現する場合, 実際に得られた伝達関数は元の伝達関数と一致しないのが普通である. このずれを最小にするフィルタ構造を合成するために, 係数の感度を定義し, その大きさが可制御性グラミアンと可観測性グラミアンによって表わされること, 及び等価変換行列に左右されることを示し, 状態変数にスケーリングの制約がない場合及びある場合について, それぞれ感度最小フィルタ構造の合成法を開発した. 次に, 多次元巡回形ディジタルフィルタに対するリアプノフ安定定理を導出し, この条件が成立するための必要十分条件を導いた. さらに, 有限語長実限に起因する加算のオーバーフローによるリミットサイクルが発生しないための十分条件を示した. これらは従来の理論を特別な場合として含む, 安定な一般的なものである. また, この多次元リアプノフ安定定理に基づく多次元巡回形ディジタルフィルタの設計法も開発した. 多次元情報の高速処理については2種類の並列処理方式を考案した. 1つは多次元データの1標本点に1つのプロセッサを対応させ, 複数の標本点を同時に処理する方式である. 他の1つは1標本点を複数のプロセッサで処理する方式である. これらの併用により高並列処理が可能になる. 試作機では, プロセッサとしてDSP4台の他にホストとしてPCー9801を用いている. ホストは各メモリへのプログラム, データの書き込み, DSPのセット及びリセット,処理結果の回収等を行う. 2種類の並列処理方式を実現するために, 2つのデータバスが用意されている. 1つは完全結合方式でDSP間のデータ転送が効率よく行われる. 他は, 各メモリとも4つのDSPからアクセスできるが, 読み出しと書き込みとではアクセス方法が異なるものである. 現在, この実験システムは試作中である.
|