研究分担者 |
伊藤 隆 琉球大学, 理学部, 助手 (40193495)
志賀 博雄 琉球大学, 理学部, 助教授 (40128484)
西白保 敏彦 琉球大学, 理学部, 教授 (70044956)
石川 弘 琉球大学, 理学部, 教授 (70044980)
前原 龍二 琉球大学, 理学部, 教授 (40044987)
|
研究概要 |
Mを複素多様体N上の実超曲面とする. するとM上にはCR-structureと呼ばれる構造, i・e, ^ρT^1=T^<0,1>NIM〓CTMがはいり, (1)^ρT^<11>〓^6T^^-^<11>=0, (2)〔「M,^ρT^<//>), 「M,^ρT^<//>)〕(「M,^ρT^<//>)を満たす. 私が取り扱っているのはこの逆でアブストラクトな微分可能多様体Mとその上のC^∞-vectorbundle^0T^<11>で上の(1)と(2)を満たす時(M,^ρT^<//>)は, 局所的に複素多様体の実超曲面として実現できるか?この問題は, dim_<1R>M=2n-1≧9の時は, OK(倉西), dim_<1R>M=2n-1=7時 OK(筆者)そしdim_<1R>M=3の時は, 反例がある(Nirenberg). これ故 dim_<1R>M=2n-1=5の時が, 問題であったがまだ未解決で今年度は, 残念ながら出来なかった. 今年の成果は, 倉西と筆者の手法は, higher co-dinension caseにも拡張できることを証明(ここでhigher co-dinensionとは dim_<1R>(/)CTM(/)^ρT^<12>+^σT^^-^<11>=P>1実超曲面の時は、上のPの値は、1)。そしてこの時、Mは、局所的に M^<(2n-P)={q.q〓C^<n>,f_1(q)=f_2(q)= =f_p(q)=0}、ここでf_iは実C<∞>関数となる。(Indiana J.に出ます)。 筆者としては, 来年以後の研究に全てをかけたいと思っています.
|