研究領域 | ミルフィーユ構造の材料科学-新強化原理に基づく次世代構造材料の創製- |
研究課題/領域番号 |
19H05131
|
研究種目 |
新学術領域研究(研究領域提案型)
|
配分区分 | 補助金 |
審査区分 |
理工系
|
研究機関 | 九州大学 |
研究代表者 |
Cesana Pierluigi 九州大学, マス・フォア・インダストリ研究所, 准教授 (60771532)
|
研究期間 (年度) |
2019-04-01 – 2021-03-31
|
研究課題ステータス |
完了 (2020年度)
|
配分額 *注記 |
4,680千円 (直接経費: 3,600千円、間接経費: 1,080千円)
2020年度: 2,340千円 (直接経費: 1,800千円、間接経費: 540千円)
2019年度: 2,340千円 (直接経費: 1,800千円、間接経費: 540千円)
|
キーワード | Disclinations / Kink formation / Calculus of Variations / Solid Mechanics |
研究開始時の研究の概要 |
I will focus on the investigation of topological mismatches (disclinations) caused by kinks by employing tools from solid mechanics and calculus of variations with the goal of elucidating the overall effect of kinks and disclinations on the materials strengthening.
|
研究実績の概要 |
Developed a numerical code based on the Finite Element Method for a micro-plasticity model of metal alloys (elastic crystals). Computed numerical solutions to uniaxial traction tests of rectangular structures with square or hexagonal lattice symmetries. Discovered that kinks emerge due to interplay of structural vs. material instabilities and kink morphologies strongly depend on lattice symmetry and aspect ratio. Developed an analytical theory to describe self-similar microstructures in elastic crystals as the solutions to differential inclusion problems in non-linear elasticity. As an application, obtained exact constructions and energy estimates of elastic deformations causing disclinations. Developed the first mathematically rigorous theory for the modeling of planar wedge disclinations by characterizing the Gamma-limits of a discrete model on the triangular lattice. Computed energies and lattice displacements causing disclination and analyzed their behavior as the lattice spacing vanishes, thus characterizing the energetics of large samples with disclinations. Computed exact solutions to a fourth order model for surface diffusion and obtained exact effective energies in soft polymers with low order states.
|
現在までの達成度 (段落) |
令和2年度が最終年度であるため、記入しない。
|
今後の研究の推進方策 |
令和2年度が最終年度であるため、記入しない。
|