研究領域 | ミルフィーユ構造の材料科学-新強化原理に基づく次世代構造材料の創製- |
研究課題/領域番号 |
19H05136
|
研究種目 |
新学術領域研究(研究領域提案型)
|
配分区分 | 補助金 |
審査区分 |
理工系
|
研究機関 | 東京大学 |
研究代表者 |
増田 紘士 東京大学, 大学院工学系研究科(工学部), 助教 (20823701)
|
研究期間 (年度) |
2019-04-01 – 2021-03-31
|
研究課題ステータス |
完了 (2020年度)
|
配分額 *注記 |
6,890千円 (直接経費: 5,300千円、間接経費: 1,590千円)
2020年度: 3,510千円 (直接経費: 2,700千円、間接経費: 810千円)
2019年度: 3,380千円 (直接経費: 2,600千円、間接経費: 780千円)
|
キーワード | セラミックス / 熱遮蔽コーティング / 結晶塑性 / キンク変形 / キンク強靭化 / 回転型キンク / 強弾性 / ミルフィーユ構造 |
研究開始時の研究の概要 |
航空機エンジン用のタービンブレードには,耐熱温度の向上のためにセラミックスコーティングが用いられている。しかし,セラミックス材料は脆く,これをバードストライク等の異物衝突(FOD)から如何に守るかがエンジンシステム全体の信頼性に直結する問題となっている。そこで本研究は,セラミックスコーティングがFODを受けた際にしばしば観察される「キンク変形」に着目し,本現象を「衝撃エネルギーの吸収機構」として利用した「キンク強靭化」の概念を提案する。同時に,セラミックスコーティングにおけるキンク変形の発生原理を解明するとともに,キンク強靭化によってFODへの耐久性に優れた新たなコーティングの創製を目指す。
|
研究実績の概要 |
航空機エンジン用のタービンブレードには,耐熱温度の向上のために,セラミックスをトップコートとする「熱遮蔽コーティング」が用いられる。しかし,セラミックス材料は脆く,これをバードストライク等の異物衝突 (FOD: foreign objective damage) から如何に守るかがエンジンシステム全体の信頼性に直結する問題となっている。そこで本研究は,熱遮蔽コーティングがFODを受けた際にしばしば観察される,セラミックス層の「キンク変形」に着目し,本現象を「衝撃エネルギーの吸収機構」として利用した「キンク強靭化」の概念を提案した。 具体的には,8 wt%イットリア安定化ジルコニア (8YSZ) を対象に,コーティング中の「擬単結晶マイクロコラム構造」における単一コラムを模擬した「擬単結晶マイクロピラー」をイオンビーム微細加工法により作製し,ナノインデンターを用いた圧縮試験を行うことで,室温における8YSZコラムの単軸圧縮下での変形・破壊特性を調査した。本材料の圧縮特性は,明確な結晶方位依存性を示し,<001>c,<101>c,<111>c付近での単軸圧縮試験において,それぞれ特徴的な変形・破壊特性が観察された。 (1) <001>c方位:ナノ双晶ドメインのスイッチングに基づく強弾性変形に加えて,{101}c <101>cもしくは{111}c <101>cすべり (hard slip) を主すべり系とする塑性変形を生じた。 (2) <101>c方位:脆性的な擬へき開破壊を生じた。 (3) <111>c方位:{001}c <110>cすべり (soft slip) を主すべり系とする塑性変形を生じた。また,多重すべり変形による「回転型キンク」の形成が確認された。 以上の結果は,熱遮蔽コーティングのトップコートにおける結晶方位制御を指針化する上で有用な知見である。
|
現在までの達成度 (段落) |
令和2年度が最終年度であるため、記入しない。
|
今後の研究の推進方策 |
令和2年度が最終年度であるため、記入しない。
|