研究領域 | 「学習物理学」の創成-機械学習と物理学の融合新領域による基礎物理学の変革 |
研究課題/領域番号 |
23H04521
|
研究種目 |
学術変革領域研究(A)
|
配分区分 | 補助金 |
審査区分 |
学術変革領域研究区分(Ⅱ)
|
研究機関 | 明治大学 |
研究代表者 |
中野 直人 明治大学, 先端数理科学研究科, 特任准教授 (30612642)
|
研究期間 (年度) |
2023-04-01 – 2025-03-31
|
研究課題ステータス |
交付 (2024年度)
|
配分額 *注記 |
2,600千円 (直接経費: 2,000千円、間接経費: 600千円)
2024年度: 1,300千円 (直接経費: 1,000千円、間接経費: 300千円)
2023年度: 1,300千円 (直接経費: 1,000千円、間接経費: 300千円)
|
キーワード | ランダムネットワーク / レザバーコンピューティング / 統計物理 / 力学系 / 機械学習 |
研究開始時の研究の概要 |
再帰的ニューラルネットワークの1種であるレザバーコンピューティング (RC) は,学習コストの低さやタスクに対する柔軟性のため,幅広い分野で応用されている.本研究は,力学系と統計物理のアプローチから「どのような入出力時系列に対して,どのように RC のネットワークを設計すれば良いか」の方法論の構築を目的とする.これを基に入出力データを統合した拡大ネットワークを導入し,再現性の高い力学系のエミュレーションを行う.これにより,物理学・数学と機械学習の融合を目指す.
|