研究領域 | 超低速ミュオン顕微鏡が拓く物質・生命・素粒子科学のフロンティア |
研究課題/領域番号 |
26108709
|
研究種目 |
新学術領域研究(研究領域提案型)
|
配分区分 | 補助金 |
審査区分 |
理工系
|
研究機関 | 名古屋大学 |
研究代表者 |
竹中 康司 名古屋大学, 工学(系)研究科(研究院), 教授 (60283454)
|
研究期間 (年度) |
2014-04-01 – 2016-03-31
|
研究課題ステータス |
完了 (2015年度)
|
配分額 *注記 |
8,450千円 (直接経費: 6,500千円、間接経費: 1,950千円)
2015年度: 4,290千円 (直接経費: 3,300千円、間接経費: 990千円)
2014年度: 4,160千円 (直接経費: 3,200千円、間接経費: 960千円)
|
キーワード | 磁性 / 複合材料 / 界面 / 負熱膨張 / フラストレーション |
研究実績の概要 |
負熱膨張性マンガン窒化物を熱膨張抑制剤として含む金属複合材料において、機能を決めるマンガン窒化物/金属界面の物理的・化学的状態をSEM-EDXなどの手法を用いて調べた。放電プラズマ焼結法によるマンガン窒化物/銅の複合材料では、マンガン窒化物は界面から10μm程度まで、マトリックスの銅と反応するが、逆にマトリックスの銅がマンガン窒化物と反応するのはそれより狭い2-4μmであることが分かった。この成果をもとに、高密度に焼結されたマンガン窒化物を粉砕し、粒径が50μm以上のマンガン窒化物のみを用いて複合材料を作ることで、空隙がほぼ除去でき、低熱膨張(~1 ppm/K)と高熱伝導度(~190 W/mK)を両立できた。この成果は、将来的なヒートシンク材料等への応用につながる重要な成果である。。 さらに、圧縮ねじり法と放電プラズマ焼結方との違いを調べるため、マンガン窒化物とアルミニウムとの複合材料をこの2法で作製し、熱膨張や電気伝導のほか、上述の方法により界面の状態を調べた。その結果、電気伝導性、熱伝導性ともに圧縮ねじり法が優れていることがわかった。さらに界面については、銅マトリックスに比べて界面の反応層が厚く(~20μm)、とくに圧縮ねじり法ではマトリックスのアルミニウム側へのフィラーの染み出しが顕著(~20μm以上)であることもわかった。より厚い界面層の存在は、マトリックス/フィラーの高い密着性を意味しているが、その分、化学反応により素材本来の機能が損なわれている可能性があり、今後の検討事項である。 研究の終盤で、ルテニウム酸化物において巨大な負熱膨張を発見した。
|
現在までの達成度 (段落) |
27年度が最終年度であるため、記入しない。
|
今後の研究の推進方策 |
27年度が最終年度であるため、記入しない。
|