研究領域 | 宇宙観測検出器と量子ビームの出会い。新たな応用への架け橋。 |
研究課題/領域番号 |
18H05463
|
研究機関 | 東京大学 |
研究代表者 |
高橋 忠幸 東京大学, カブリ数物連携宇宙研究機構, 教授 (50183851)
|
研究分担者 |
武田 伸一郎 東京大学, カブリ数物連携宇宙研究機構, 特任助教 (80553718)
織田 忠 東京大学, カブリ数物連携宇宙研究機構, 特任助教 (10746522)
柳下 淳 東京大学, カブリ数物連携宇宙研究機構, 特任助教 (20626676)
サンペトラ オルテア 慶應義塾大学, 医学部(信濃町), 助教 (50571113)
内山 泰伸 立教大学, 人工知能科学研究科, 教授 (00435801)
能町 正治 大阪大学, 核物理研究センター, 教授 (90208299)
益子 高 近畿大学, 薬学部, 研究員 (30157200)
|
研究期間 (年度) |
2018-06-29 – 2023-03-31
|
キーワード | ガンマ線検出器 / CdTe / 核医学 / SPECT / コンプトンカメラ |
研究実績の概要 |
1)可搬型の冷却チャンバーを開発し、2mm厚のCdTe両面ストリップ検出器を格納したシステムを完成させた。B01班と共同で、実際にJ-PARCにおける負ミュオンビームによる隕石の非破壊元素分析(C,Mg,Siなどの軽元素の定量化)に向けた予備実験に供与した。医学研究においては、様々なin vivoイメージング実験を通じて、薬物動態の可視化に向けた課題の識別を行なった。Tc-99mなど高いエネルギーのガンマ線に対する感度向上、 コリメータの広視野化などが抽出され、それぞれ実際に改良型の研究を進めた。3D金属プリンタを用いて製作したタングステン製の平行孔コリメータを用いたAt-211のためのイメージャを整備し臨床応用に向けたコリメータの視野、サイズについて要求条件をまとめた。トモグラフィを行うため、並行コリメータやコンプトンカメラなどの光学系に対して画像解析ソフトウェアを整備した。医学、宇宙観測、素粒子実験等への応用をはかるために60μmピッチのCdTe両面ストリップ検出器やTimePix3を用いたSiおよびCdTeピクセル検出器の研究を進めた。可搬型装置の実現のため、高速で小型のデータ収集装置の開発を行った。機械学習を用いた画像解析、特に検出器でのクラスタリングの研究を進めた。2)益子によりがん細胞表面のCAT1に選択的結合性を有する抗体の研究により、抗CAT1抗体の添加により、細胞表面のCAT1が細胞に内在化することが示された。3) in vivo 3Dイメージングの検討のため、臓器や血管などの形状や密度分布を模したマウスや人体の数学モデルを用いたシミュレーションで設計検証を行うためのセットアップを完成させた。マウスのデジタルファントムとGeant4をつなげたシミュレーション手順を開発し、CdTe3Dイメージング装置(CdTeガントリー)の組み込みが完了した。
|
現在までの達成度 (区分) |
現在までの達成度 (区分)
1: 当初の計画以上に進展している
理由
我々の技術は、医学・ライフサイエンス領域においても技術革新を呼び起こすブレークスルーとなりうるという確かな手応えが得られている。特に、我々が高い技術を持つ高いエネルギー分解能を有するCdTe半導体検出器を用いたイメージャは、従来の核医学ガンマカメラに比べて空間分解能、エネルギー分解能ともはるかに優れたものであり、既存技術では不可能だった核医学イメージングによる高空間分解能かつ、複数の核種からの異なるエネルギーの光子の同時描出を可能にしうることを明らかにできた。これをもとに医学・薬学の国内外の研究者との共同研究を進めることができている。医学コミュニティばかりではなく、原子核・素粒子実験、原子物理から惑星科学(サンプルリターン)におよぶ広いコミュニティに我々の有する技術が展開されるようになった。また、これらの宇宙科学の近接分野の研究者との様々な共同研究を通じて新たな知見が、さらなる検出器技術、あるいは解析技術の質的向上につながる循環が実現した。
|
今後の研究の推進方策 |
本研究は宇宙観測のために開発されてきた硬X線・ガンマ線検出器を進化させることで、医学研究の場において、これまでにない精度での生体内3Dイメージングを実現、「検知力」の格段な向上を提供し、これまでに困難であった課題に対する医学研究を可能とするものでことをめざす。そのために、医学研究からの要求を把握すること、さらに、共に実験を行い、物理研究者の観点で課題を見出すことが重要であり、医学研究者や薬学研究者との連携を深めることが必要である。共同研究契約により国立がん研究センター(千葉県柏市)に設置することができた本グループ開発のイメージング装置を用い、微小がんの発見や転移の早期発見をめざした微少リンパ節転移イメージングなど、担がんマウスを用いた医学実験を進める。また、低酸素領域やがん幹細胞に代表されるような微小環境の複雑性を研究するためのプローブの検討、さらにそれを目的の部位に到達させるためのDDS(Drug Delivery System)に関する研究、がん細胞において抵抗性をもたらしているとされるxCTに接合する抗体や低分子によるプローブの研究を進める。アルファ線放出核種を用い、診断と治療の同時実施を可能にするための研究において、薬物動態の可視化をはかる。成果を核医学や分子イメージング、あるいは癌学会など、数物領域以外のコミュニティにて発表する。医学研究と並行して、画像解析ソフトウェアの高速化・機械学習の導入、キャリブレーションの高精度化、シミュレーションの整備などのソフトウェア開発、さらに、より広視野をもつコリメータの開発、高い検出効率を持つCdTe半導体イメージャ、高いフラックスでのイメージングが可能なCdTeセンサーなど、検出器開発を進める。可搬性、小型化を強く意識した装置開発をイメージングセンサーやデータ収集装置について進めており、今後もその努力を続ける。
|