• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

1989 年度 実績報告書

環論、組合せ論、表現論とその応用

研究課題

研究課題/領域番号 01540035
研究機関名古屋大学

研究代表者

松村 英之  名古屋大学, 理学部, 教授 (80025270)

研究分担者 三町 勝久  名古屋大学, 理学部, 助手 (40211594)
林 孝宏  名古屋大学, 理学部, 助手 (60208618)
橋本 光靖  名古屋大学, 理学部, 助手 (10208465)
日比 孝之  名古屋大学, 理学部, 助手 (80181113)
吉野 雄二  名古屋大学, 理学部, 助手 (00135302)
キーワード行列式イデアル / Ehrhart多項式 / Cohen-Macaulay加群 / 極小自由分解 / 量子群 / Yang-Baxter作用素
研究概要

吉野は院生の長行洋と共同で、非可換環上のBlowing-upを定義してその性質をしらべ、M.アルチンのある定理の一般化を得た。また、Cohen-Macaulay加群の分類論についての英文の著書を完成し、ケンブリッヂ大学出版局から平成元年度中にも出版する予定である。
日比は環論と組合せ論の境界における仕事を精力的につづけ、多くの結果を得た。とくに今年度は有理凸多面体に含まれる或る有理点の数え上げから得られるCohen-Macaulay環がいつGorenstein環になるかという条件を決定した。このような有理点の数の研究はいわゆるEhrhart多項式の研究である。
橋本は都立大の蔵野と共同で行っていた。一般行列の小行列式で生成されるイデアルが有理整数上に極小自由分解をもつための必要十分条件の研究を、一部は独力で更に押し進め、殆ど決定的な結果に近ずきつつある。また、林と共同で、標数によらない一般線型群の表現論の量子化に取り組み、Yang-Baxter作用素などについて良い結果を得た。
三町は量子群の表現と直交多項式のq-アナログ等に関して、上智大の野海氏などと共に研究して多くの結果を得た。とくに、球関数のq-アナログとしての小q-ヤコビ多項式、対称大q-ヤコビ多項式、対称q-Hahn多項式等に、量子群の表現による群論的解釈を与えることに成功した。

  • 研究成果

    (7件)

すべて その他

すべて 文献書誌 (7件)

  • [文献書誌] 日比孝之: "Flawless O-sequences and Hilbert functions of Cohen-Macaulay integral domains" Journal of Pure and Applied Algebra. 60. 245-251 (1989)

  • [文献書誌] 日比孝之: "Plane graphs and Cohen-Macaulay posets" European Journal of Combinatorics. 10. 537-542 (1989)

  • [文献書誌] 橋本光靖,蔵野和彦: "Resolutions of Determinantal ideals:n-minors of(n 2)-spuare matrices" Advances in Mathematics.

  • [文献書誌] 橋本光靖,林孝宏: "Quantum multilinear algebra"

  • [文献書誌] 吉野雄二(長行洋と共著): "Constructing orders by blowing-up."

  • [文献書誌] 橋本光靖: "Determinantal ideals without minimal free resolutions" Nagoya Mathematical Journal. 118. (1990)

  • [文献書誌] 吉野雄二: "Cohen-Macaulay modules over Cohen-Macaulay rings" Cambridge University Press, (1990)

URL: 

公開日: 1993-03-26   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi