研究課題/領域番号 |
02640133
|
研究機関 | 愛媛大学 |
研究代表者 |
猪狩 勝寿 愛媛大学, 工学部, 教授 (90025487)
|
研究分担者 |
一ノ瀬 弥 愛媛大学, 工学部, 助教授 (80144690)
天野 要 愛媛大学, 工学部, 助教授 (80113512)
定松 隆 愛媛大学, 工学部, 教授 (10025439)
|
キーワード | 最適差分スキ-ム / 分散と散逸 / 不安定現象 / 代用電荷法 / 数値等角写像 / 解の接続 / 特性曲面 |
研究概要 |
1.波の伝播を記述する、最も簡単な双曲型方程式である、伝播方程式を例に、それを近似する陰的差分スキ-ムを取りあげ、そこに含まれる2つのパラメ-タの最も適切な選び方についての数値解析的研究を行なった。差分スキ-ムの固有値分布を解析することにより、或る意味での最適スキ-ムを求めた。またその差分解の位相が波数に応じて遅れること(分散)、および振幅が減衰すること(散逸)も明らかにした。 2.KーdV方程式を近似するZabuskyーKruskalスキ-ムによる差分解が、ある時間経過すると、急に不安定になる現象を調べ、丸め誤差の影影響、CFL比との関係を解析した。今後研究を進め、出来るだけ長時間安定に保つための汎用な方法を探る計画である。 3.代用電荷法に基づく数値等角写像の研究を行ない、最適な電荷配置、領域の特異性の取り扱い方、誤差分布の特徴などについて、いくつかの知見を得、それを自動的電荷配置へ応用した。また積分方程式法との比較研究も行なった。 4.理論的見地から、非包合的多重特性集合をもつ偏微分方程式の研究も行なった。解の接続、特異解の存在、零解の存在の観点から、それらが包合的多重特性集合をもつものとは全く違った性質を持つことを明らかにした。局所化の概念を用い、相関数の存在を示し、次に特性曲面にデ-タを与えて、解を一意に定めることが出来ることを示し、更にその解の存在域に関する精密な評価を与え、それらの応用として、複素および実領域での解の接続に関する結果を得た。
|