研究概要 |
固定点が孤立している群(Z_2)^k作用およびその同変コボルディズムを研究している。現在特に進めている研究は、作用する群の階数kと多様体Mの次元nが一致する場合である。このような多様体Mを2-トーラス多様体という。2-トーラス多様体は、軌道空間が角付き多様体となるというよい性質をもっている。単純凸多面体は角付き多様体の典型的な例で、軌道空間が単純凸多面体となっているものをsmall coverという。Small coverは軌道空間が凸多面体ゆえ、組み合わせ論を密接に結びついた興味ある対象である。実際small coverを通してトポロジーと組合せ論との間に面白い関係が考察されている。Small coverの議論の多くは、トーリック多様体の議論がそのまま成立し、トーリック多様体論と同様な結果が得られるが、そうでないこともある。例えば、small coverの基本群は自明とは限らず、トーラスに代表されるK(G,1)空間が現れる。また、向きが付けられないsmall coverも多くある。また、凸多面体の彩色問題とも密接に関係している。このように、トーリック多様体論には見られないsmall coverの性質の研究は興味深い。 本年は、2次元のsmall coverの数え上げを行った。この議論は、2-トーラス多様体にも拡張され、2次元の2-トーラス多様体の数え上げも完成した。しかし、高次元の場合の数え上げは、簡単ではない。2-トーラス多様体は、グラフ理論とも密接な関係がある。現在、トポロジーの観点から、axial functionをもった3-valentグラフの研究を進めている。
|