• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

1992 年度 実績報告書

無限自由度の可積分系および無限次元代数

研究課題

研究課題/領域番号 04245105
研究機関京都大学

研究代表者

三輪 哲二  京都大学, 数理解析研究所, 教授 (10027386)

研究分担者 梁 成吉  筑波大学, 物理学系, 助教授 (70201118)
上野 喜三雄  早稲田大学, 理工学部, 助教授 (70160190)
大栗 博司  京都大学, 数理解析研究所, 助教授 (20185234)
野海 正俊  東京大学, 大学院数理科学研究科, 助教授 (80164672)
神保 道夫  京都大学, 理学部, 教授 (80109082)
キーワード可解格子模型 / 相関函数 / 量子群 / XXZ模型 / ボゾン表示 / チャーン・サイモン理論 / ヤン・バクスター方程式 / ベーテ仮説
研究概要

可解格子模型の相関函数について神保・三輪による進展があった。すなわち、XXZ模型について量子群の対称性を用いるハミルトニアンの対角化が実行された。頂点作用素のq変形を用いて、相関函数はトレースの形の求められること、さらにボゾン表示により、積分表示式も得られた。さらに、一般の可解格子模型に対して相関函数の満たす差分方程式を求める方法が開発された。野海は、量子等質空間の球函数としてマクドナルド多項式が現われることを発見した。また量子群の双対ペアについて考察した。大栗は3、4次元の位相的格子模型について研究し、3次元の場合に物理的状態がチャーン・サイモン理論と対応すること、4次元の場合に位相不変量が与えられることを示した。またN=2の超共形場の理論の分配函数が満たす漸化式を導いた。さらに3次元の格子重力理論の応用として4面体分割数の漸化式を導いた。稲見は量子スピン系の連続極限について超対称サイン・ゴルドン理論との関係を調べた。柏原は結晶基底とワイル群の関連について研究し、それを旗多様体のシュベルト分解に応用した。伊達は神保・三輪理論に基いて量子群sl(n)の場合に、KZ方程式の解を求めている。上野(喜)は楕円型の無限次元R行列を発見し、ヤン・バクスター方程式がテータ函数のフェイン公式に帰着することを示した。また、量子群のプランシュレル公式についても研究している。梁はコセット共形場の理論においてN=2模型の指標公式を計算した。また熱力学的ベーテ仮説の方法を用いて相関函数の短距離構造を導いた。さらに、2次元ブラックホールについて研究しリュービル理論との同型関係を明らかにした。

  • 研究成果

    (6件)

すべて その他

すべて 文献書誌 (6件)

  • [文献書誌] Jimbo,Michio: "Difference equations for the correlation functions of the eight-vertex model" to appear in J.Phys.A.

  • [文献書誌] Yang,Sung-Kill: "Woo Algebra in Two-Dimensional Black Hole" to appear Phys.Lett.B.

  • [文献書誌] Noumi,Masatoshi: "A realization of Macdonald'symmetric polynomials on quantum homogeneous space" to appear in Proceedings of the 21st International Conference on Differential Geometry Methods in Theoretical Physics,Tianjin,1992.

  • [文献書誌] Ooguri,Hiroshi: "Partition Functions and Topology-Changing Amplitude in the Three-Dimensional Lattice Gravity of Pozano and Regge" Nuclear Physics. B382. 276-304 (1992)

  • [文献書誌] Kashiwara,Masaki: "Crystal base Littlmann's refined Demazure character formula" to appear in Duke Mathematical Journal.

  • [文献書誌] Ueno Kimio: "Infinite-Dimensional R matrix with Complete Z symmetry" Lett.Math.Phys.25. 239-248 (1992)

URL: 

公開日: 1994-03-23   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi