研究概要 |
リース総和法に関する凸型定理は1923年にActa de szegedに出たM.Rieszの論文が出発点になっており、アメリカ、イギリス、ドイツ、インド、日本等の多くの研究者によって研究されてきた。 例えば、L.S.Bosanquet,W.B.Jurkat,M.S.Rangachari,M.S.Bosanquet,K.Zeller,A.Peyerimhoff,菅野,坂田等である。 M.Rieszは最初に、W(x)、V(x)が正で非減少の関数で、A^δ(x)=0[W(x)](δ>0),A(x)=O[V(x)]のとき、A^γ(x)=0[V(x)^<1-γ/δ> W(x)^<γ/δ>](0<γ<δ)が成立するという凸型定理を証明した。 我々は、最終的に次のような定理を証明することができた。x^αW(x)>0,(0≦α<1)、非減少関数とし、V(x^1/V(x)<H,0<x-x^1<yx,(H>1,0<y<1){W(x)/V(x)}1/δ=O(x) (δ>0)とし、A^δ(x)=0[W(x)],A(x)=O[V(x)]とするならば A^γ(x)=0〔V(x)^<1-γ/δ> W(x)^<γ/δ>],0<γ<δ.
|