研究概要 |
大きいスケールの流れ(線形流)の一つの代表例である淀み流を数値シミュレーションする.せん断流は回転と渦伸長の両効果を持つが,淀み流は後者のみで両流れを比較することにより,各々から系への影響を調べることが可能となる.また,これらの大きいスケールを伴う流れを大きい渦から小さい渦への作用のモデルと考えると,その時間変化を考えることは自然であり、乱流のモデルを構築する際にも貴重なデータとなる. 今年度は,本科研費の研究で作成したスキームが三次元でも有効であり,淀み流の効果により非等方性が発達することを確認した.今のところ比較的小さい規模の計算しか行なっていないが,今後の大規模計算のためのパラメータチェック及び,解析用プログラムの開発がほぼ終ったところである.現段階のシミュレーションにおいても,一様乱流やせん断乱流において報告されているような微細渦構造が存在し,渦伸長のために非等方化することを確認した.この様な素過程を解明することは,乱流の間欠性を理解する上で重要なことである.また,非等方乱流の代表的理論であるRapid-Distortion-Approximationとの比較も行ない,定性的に一致することも分かった.これらの結果は,いくつかの研究会において途中経過として発表してきた. 今後は,より大規模な計算を行ない統計的性質を調べ,既知の理論や数値計算の結果との比較を行なう.乱流場に現れる微細渦構造についても幾分明らかになってきたので,それをモデル化した流れのダイナミックスも調べる.また,今回のスキームを更に改良すると,時間に依存する一般の線形流のシミュレーションも可能になると考えられる.
|