• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

1993 年度 実績報告書

種々の直交多項式にかかわる調和解析

研究課題

研究課題/領域番号 05640163
研究機関金沢大学

研究代表者

勘甚 裕一  金沢大学, 教養部, 助教授 (50091674)

研究分担者 齊藤 博  金沢大学, 教養部, 助教授 (80135293)
半沢 英一  金沢大学, 教養部, 助教授 (80142686)
喜多 通武  金沢大学, 教養部, 教授 (50053707)
渡辺 力  金沢大学, 教養部, 教授 (50019478)
土谷 正明  金沢大学, 教養部, 教授 (50016101)
キーワードエルミート・フェイエール補間 / フロイト多項式 / ラゲール多項式 / 端数積分
研究概要

本年度、研究課題名“種々の直交多項式にかかわる調和解析"で行なった研究によって得られた新たな知見は次の通りである。
1.重みexp(-x^m/2),m=2,4,6…に関するn次直交多項式の零点{x_<kn>;k=1,2,…,n}を補間点とする関数f(x)に対するν(>0)次のエルミート・フェイエール補間多項式をL_n(ν;f,x)とする。即ち、L_n(ν;f,x_<kn>),L_n^<(r)>(ν;f,x_<kn>)=0,r=1,2,…,ν-1を満たす高々ν_n-1次の多項式のこと。この時、次数νが偶数であれば、任意の有限区間においてその上で連続なすべてのf(x)に対して補間多項式列L_n(ν;f,x)はn→∞のときf(x)に一様収束する。一方、νが奇数であれば、どんな小区間をとっても補間多項式列L_n(ν;f,x)がその上では収束しないような連続関数f(x)が存在する。
2.関数f(x)の高次導関数をも補間する高次補間多項式を考える。このとき、この補間多項式列は元の関数f(x)に一様収束するのみならず、高次導関数もこめて一様収束する。
3.α次のラゲール多項式L_n^α(x)から作られる完備な正規直交系{c_nL_n^α(x)e^<-x/2>x^<α/2>},c_n={n!/Г(n+α+1)}}^<1/2>を考える。この直交系に対して、フーリエ級数におけるハーディー・リトルウッドの端数積分に関する定理が同じ定式化で成り立つ。
以上の成果を受けて、1、2については、より一般なフロイトの重みへ拡張することを現在行なっている。3については、すでに応用の可能性を見いだしてある。これを近い将来完成させたい。

  • 研究成果

    (6件)

すべて その他

すべて 文献書誌 (6件)

  • [文献書誌] Yuichi Kanjin: "Pointwise convergence of Hermite-Fejer interpolation of higher order for Freud weights" Tohoku Math.J.46. (1994)

  • [文献書誌] Yuichi Kanjin: "Convergence of the derivatives of Hermite-Fejer interpolation polynomials of higer order based of the 3eros of Freud polynomials" J.Approx.Theory.

  • [文献書誌] Yuichi Kanjin: "The Hardy-Littlewood theorem on fractional integration for Laguerve series" Proc.Amer.Math.Soc.

  • [文献書誌] Michitake Kita: "On hypergeometric functions in several variables II.The Wronskian of the hypergeometric functions of type(n+1,m+1)" J.Math.Soc.Japan. 45. 645-669 (1993)

  • [文献書誌] Michitake Kita: "Intersection theory for twisted cycles(I)" Math.Nachr.

  • [文献書誌] Michitake Kita: "Intersection theory for twisted cycles(II)" Math.Nachr.

URL: 

公開日: 1995-02-08   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi