幾何学に現れる非線型熱方程式の解の振舞い、および解の空間の構造を調べるのが目的である。これまでの研究により、Yang-Mills flowやmean curvature flowの解が、ある条件の下でコンセントレーション・コンパクトネスという現象が現れることが得られ、「非線型性の個性」を粗くとらえることにより、ある種の「共通の非線型構造」が存在することが示された。今年度は、p-調和写像の列についてコンセントレーション・コンパクトネスの立場からの研究を行った。「p-調和写像の列は、(部分列をとれば)あるn乗エネルギー積分が有界であるという条件の下で、(1)2【less than or equal】p<nなら、一様にC^1-収束、(2)p=nなら、有限個の点を除いて広義一様にC^1-収束する」という結果が得られた。(1)の事業は、「criticalなレベルでも必ずしもコンセントレーションが起こるとは限らないこと」とその理由を示している。
|