ボーズ凝縮体と非凝縮体はそのコヒーレンス性の違いのため、周期ポテンシャルである光格子中において通常の調和型ポテンシャル中とは異なる興味深いダイナミクスを示すことが期待される。 これまで我々は非凝縮体を静的に扱い、ボーズ凝縮体のダイナミクスのみに注目し研究を行ってきた。本年度は前年度に得られた光格子中ボーズ原子気体を記述する有効作用を用いることで非凝縮体の運動方程式(ボルツマン方程式)を導出し、凝縮体と非凝縮体が互いに絡んだダイナミクスを調べた。特に重心振動(ダイポール振動)に注目し、凝縮体と非凝縮体のダイナミクスに対する周期ポテンシャル(光格子)の影響について議論した。その結果以下のようなことがわかった。 周期ポテンシャルである光格子のために、凝縮体、非凝縮体ともにウムクラップ散乱の影響を受ける。凝縮体と非凝縮体の運動方程式を解くことにより、ウムクラップ散乱が凝縮体と非凝縮体の集団振動に対し新たな減衰機構となることが示された。その結果、両成分の重心振動がともに減衰を示すことがわかった。これは通常の調和型トラップポテンシャルのみでは決して見られないことである。光格子中における凝縮体と非凝縮体の集団振動におけるこのような減衰はフィレンツェの実験において観測されている。
|