空間グラフの頂点ホモトピーによる分類のために必要とされるであろう頂点ホモトピー不変量として新たに2成分絡み目のコンウェイ多項式の3次の係数に基づいたものを構成した。さらにこの不変量をより一般的な立場から説明するであろう不変量として空間グラフの補空間の基本群のある剰余群で頂点ホモトピー不変量となるものを定義した。また結び目理論では任意の絡み目の任意の正則射影図は交差の上下を適当に入れ換えて自明な絡み目の射影図にすることが出来ることが知られているが、同様のことは一般の平面グラフでは成立しないことを示した。すなわち正体グラフの正則射影でどのように上下をつけてもホップ絡み目を含むものが存在する。また非自明なハンドカフグラフの正則射影全体の集合は有限個の非自明なハントカフグラフの正則射影の集合の和集合とはならないことを示した。この結果は結び目、絡み目、テーター曲線に関する従来の結果から見て意外な結果である。
|