• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2007 年度 実績報告書

モジュラータワー予想とフルヴィッツ空間の幾何

研究課題

研究課題/領域番号 06F06033
研究機関京都大学

研究代表者

玉川 安騎男  京都大学, 数理解析研究所, 教授

研究分担者 CADORET Anna Gwenaelle-Lu  京都大学, 数理解析研究所, 外国人特別研究員
キーワードフルヴィッツ空間 / モジュライ空間 / 有理点 / アーベル多様体 / れじれ点 / 副有限群 / ガロアの逆問題 / 基本群
研究概要

与えられた有限群と素数の組に対し、その普遍フラティニ被覆の標準的な商群の系に付随してフルヴィッツ空間(=射影直線の分岐ガロア被覆のモジュライ空間)の射影系が定まるが、その有理点に関するM. Friedのモジュラータワー予想は基本的である。
この予想へのアプローチの一環として掲げた研究目的の内、本年度は、「1、モジュラータワー予想とアーベル多様体のねじれ点の普遍的限界の関係の精密化」に関して、特別研究員と研究代表者の共同研究が大きく進展した。特に、元のモジュラータワー予想で分岐点の数が4以下の場合を肯定的に解決することができた。
この証明の鍵となったのは、次の幾何的命題である。Sを標数0の体上の代数曲線、AをS上のアーベルスキームとし、Aの生成ファイバーは0でないアイソトリビアルな部分アーベル多様体を含まないものと仮定する。このとき、与えられた自然数gと素数pに対し、次の条件を満たす自然数N=N(A,g,p)が存在する:Aの位数p^nの点vに対し、n>Nならばvに付随するSの被覆の種数はgより大きい。
以上の結果については、特別研究員と研究代表者の共著論文"Uniform boundedness of p-torsion of abelian schemes"の第一稿が既に完成している。
なお、研究目的の内「2、フルヴィッツ空間の点の"base invariant"のモジュラータワー予想への応用」については、特別研究員と研究代表者の共著論文"Stratification of Hurwitz spaces by closed modular subvarieties"を平成18年8月に完成し投稿中である。

  • 研究成果

    (3件)

すべて その他

すべて 雑誌論文 (1件) (うち査読あり 1件) 備考 (2件)

  • [雑誌論文] The l-component of the unipotent Albanese map

    • 著者名/発表者名
      Minhyong kim and Akio Tamagawa
    • 雑誌名

      Mathematische Annalen to appear

    • 査読あり
  • [備考]

    • URL

      http://www.kurims.kyoto-u.ac.jp/ja/list/tamagawa.html

  • [備考]

    • URL

      http://www.math.u-bordeaux.fr/~cadoret/

URL: 

公開日: 2010-02-04   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi