研究課題
以前申請者は「一般連続体仮説の下では、cof(λ)<κの時はNS_<κλ>の飽和数はλ^+より大きい」ということを証明した。昨年申請者は筑波大学数学系の塩谷助手と「一般連続体仮説の下では、cof(λ)<κの時はNS_<κλ>はどんなstationary setに制限してもprecipitousとはならない」という以前の定理の拡張を得た。また最近「λがN_2以上の正則基数ならばNS_<κλ>の総和数はλ^+より大きい」と「一般連続体仮説の下では後続基数κとN_2以上のλに対してはNS_<κλ>はpresaturatedとはならない」ということを生成的超羃を使って証明した。イデアルIに対してPIとはI-positveな集合達の上に部分順序<を「X<YiffX<⊆Y」によって定義したものである。イデアルIがλ-properとはPIに関するgeneric extensionでは必ずP_<κ1>λ上のstationary setが保存されるという性質を意味する。申請者はλ-properなイデアルの存在より{α∈λ:cof(α)=ω}のstationaryな部分集合は必ずreflectすることを証明した。故にλ=δ^+ならばλ-properなイデアルの存在よりδでのbox principleの否定が得られる。そしてこれよりsingular strongの後続基数λでのλ-properなイデアルと可測基数の存在よりWoodin基数の無矛盾性が証明される。またこのようなλ-properなイデアルはsupercompact基数をLevy collapseして得られるモデルには必ず存在することを証明した。
すべて その他
すべて 文献書誌 (2件)