本研究では、ウェーブレット極大値表現による心電図圧縮・解析法を提案した。対称な平滑化関数の2次導関数を基本ウェーブレット関数に用いたウェーブレット極大値表現では、波形の変曲点でウェーブレット極大値が発生することから、波形のピークの性質を記述することができ、これを特にマルチスケールピーク解析と定義した。マルチスケールピーク解析では、心電図波形のP波からT波の5つの波形の開始点、ピーク点、終了点でウェーブレット極大値が発生する。この性質より心電図の各波の分類を行うアルゴリズムを提案した。また、凸射影復元法を適用することで、高精度の原信号復元を行うことが可能であることを示し、復元加速法について考察した。その結果、約30回程度の射影で診断に十分な精度で波形復元が行えることを確認した。提案した心電図波形の表現法は、特異点解析能力と原波形復元が可能であることから、区分点の検出と心電図のデータ圧縮を同時に行うアルゴリズムを提案することができた。本研究で提案した圧縮方式をMIT-BIH心電図データベースに適用した結果、正常な心電図データに対して、PRD8%程度の精度で1/12の圧縮率、また異常心電図に対しては平均してPRD9%程度の精度で1/10から1/14程度の圧縮率を実現した。また、専門医との検討により提案した心電図圧縮法で圧縮・復元された心電図は不整脈検出に十分利用可能であり、診断に不要な雑音を除去し、診断に有為な情報は保存する性質を持つことを確認した。
|