• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

2008 年度 実績報告書

保型形式の零点の配置と球面上の代数的組合せ論に関する研究

研究課題

研究課題/領域番号 07J00243
研究機関九州大学

研究代表者

重住 淳一  九州大学, 大学院・数理学研究院, 特別研究員(DC2)

キーワード球面デザイン / 整数格子 / アソシエーション・スキーム / コヒアラント配置
研究概要

球面上の代数的組合せ論に関する研究として,格子の分類と,その殼から得られる球面デザインについて調べた。その研究成果として,まずは整数格子の一種である3-格子について,計算機を用いて7次元以下の全ての3-格子を分類し,その最小ノルムの殻から得られる球面デザインについて調べた。先行する結果として,味村氏による5次元以下の3-格子の分類が知られている。3-格子は様々な観点から研究がなされており,事実,味村氏は正値2次形式の観点から取り組んでいるが,本研究においては球面デザインの観点から研究を行っている。また,もう1つの研究成果として,B.B.Venkov氏の最小ノルムが3の超完璧格子の分類についての結果を応用し,ノルムが3の殼が球面上の5デザインとなる格子が9つの格子に分類されることを理論的に証明した。
一方,球面上の代数的組合せ論に強い関連を持つものの1つにアソシエーション・スキーム(以下ASと表す)が挙げられる。実際,一部の球面デザインからASが構成でき,逆にASから球面への埋め込み(実現)を考えることもできる。そのASの研究の一環で,足立氏との共同研究の中で,花木-宮本のASの分類結果を用いて30点以下の全ての原始的なASの球面への実現を計算し,その実現が4次元でbalancedの性質を持つものを分類した。また,長友氏との共同研究で,一部計算機を用いて,12,13点の全てのコヒアラント配置について分類した(11点以下は白土氏による結果が知られる)。コヒアラント配置は,ASの一般化であり,またASの組合せとしても捉えられる。そのことから,近年,球面上の有限集合の組合せなどとの関連から注目されている。

  • 研究成果

    (2件)

すべて 2009

すべて 雑誌論文 (1件) (うち査読あり 1件) 学会発表 (1件)

  • [雑誌論文] Spherical designs from norm-3 shell of integral lattices2009

    • 著者名/発表者名
      Junichi Shigezumi
    • 雑誌名

      Asian-European Journal of Mathematics 2(in press)

    • 査読あり
  • [学会発表] Certain classifications of lattices and spherical designs2009

    • 著者名/発表者名
      Junichi Shigezumi
    • 学会等名
      The 1st Kumjung Seminar
    • 発表場所
      Pusan National University (韓国)
    • 年月日
      2009-02-11

URL: 

公開日: 2010-06-11   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi