研究概要 |
時間発展をともなう現象は理工学の多くの分野で現われ,その数理科学的取扱いは科学技術の中心的なテーマであるといって過言ではない.また,この現象に係わる問題は,数学に豊富な解析対象を提供してきた.本研究では,伝統的に異なった立場・領域で取り扱われてきた発展系の問題を,解法特に離故近似解法の観点で総合的に検討し,新たな結果をえようとするものである. 本研究では研究分担者とその研究協力者の,直接の研究交流をもっとも重視して進める.テーマ別課題研究として各研究分担者が研究協力者の助力をえて恒常的に実施するもので,以下にあげるテーマを重点的に惟逸した. 1. 離散近似解の精度保証(分担者:三井,久保田,中尾,室田) 2, 時間遅れあるいは確率的要素を含む発展系の離散解法(分担者:三井,小藤,齊藤,鈴木) 3. 発展系に対する高性能かつ安定な離散解法の開発と評価(分担者:三井,小川,大野,中島) 4, 力学系に対する長時間離散積分法(分担者:三井,篠原,前田,室田,吉田) 5. 発展系に対する離散解法の並列化(分担者:三井,大野,小澤) 98年10月名古屋大学において,本研究計画の分担者を中心に研究集会を開催し,研究発表を行うとともに,今後取り組むべき個別的な研究課題について集中討議を実施した.また,本研究計画も参加して98年12月龍谷大学瀬田キャンパスにおいて応用数学分野の合同研究集会を開催し,多数の参加をうるとともに,分担者・研究協力者から多くの講演発表を行なった. 研究代表者・分担者は今年度海外で開催された研究集会(Leuven,Piracus etc)にも積極的に参加し,講演発表を行うとともに,各国の研究者と交流を深め,研究の進展に寄与することができた. このように3か年計画の最終年度として,多くの研究成果を収めることができ,その主要なものは裏面記載の発表論文のごとく分担者や研究協力者の手によって公刊され,また他にも多くの学術論文が準備中である.
|