研究課題
本研究課題においては、有限群の表現論をコホモロジーの理論の立場から代数的、幾何的方法を有効に組合せて研究した。特に、群環のブロック間の導来同値の問題、アウスランダー・ライテイ図の特徴付けの問題への応用を主課題とした。ブロック間の導来同値の問題について、4次のシンプレクティック群の単位ブロックの考察を行い、未知であった分解定数の決定に至った。ここでの研究方法は、これまでの指標理論方法を改良した加群論的考察で、研究課題とした相対射影性の概念の有効な応用を図ることができた。また、3次のコニタリー群への同様のアプローチも可能性があり、階数の小さい有限代数群のブロックの導来同値の研究の重要なステップを作ることができたと考える。相対射影性の概念の応用として、輪積2-群をシロ-群にもつ有限群のコホモロジー環の構造の決定について進展があり、成果をまとめる予定である。アウスランダー・ライテン図について、加群のヴァーテックスの配置の問題を考察し、周期的加群をもたない場合に完成した。もつ場合についても課題が明らかになり研究続行中である。この問題では、群環の加群の圏の表現型とある種の周期的加群の存在の密接な関連が明らかになった。多元環,リー群などの行列群の表現論を代数的、幾何的に有効に組み合せ、自己双対群の属の構成を行い、発表予定である。事項双対群とある種の行列環との関連に注目した新たな知見と考える。経費の多くを関連分野の研究者との研究連絡、打ち合せ旅費にあてた。研究費補助に感謝します。
すべて その他
すべて 文献書誌 (3件)