• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

1996 年度 実績報告書

代数体の中心拡大 modulo m の研究

研究課題

研究課題/領域番号 08640018
研究機関新潟大学

研究代表者

竹内 照雄  新潟大学, 理学部, 助教授 (10018848)

研究分担者 秋山 茂樹  新潟大学, 理学部, 助教授 (60212445)
吉原 久夫  新潟大学, 理学部, 教授 (60114807)
キーワード中心拡大 / ノット理論 / ショルツ導手 / ショルツ認容
研究概要

中心拡大とハッセノルム原理modulo mに関連して,Scholzはnumber knot群を定義し,knot理論を展開した。Heiderは,Scholzのknot理論をmを法とする理論に拡張する際,number knot群を最大にするようなmとしてScholz導手を定義した。この性質についての今迄知られている結果は,HeiderやShiraiによるものがあるが,それらは分岐に関する部分が本質的に巡回群になる場合であり,一般のガロア拡大の場合は殆ど何も知られていない。我々は中心拡大modulo mの研究に関連して,このScholz導手についてより一般的な結果を得るために,これらの理論全体の見直しを行った。このため,我々はHeiderによる定義を少し修正したScholz認容,強Scholz認容と言う概念を提出した。さらに,この概念は元々大域的に定義されたものであるが,その本質の局所性に着目し,局所Scholz認容と言う概念を新たに定義し,これを基に理論を体系的に構成した。これは大域的性質を局所的性質に還元する事によって,理論全体の見通しを良くし,さらにその局所的性質を精密に議論し,それによって大域的性質を導くというものである。研究ではこのScholz認容についての体系的一般論を構成し,HeiderやShiraiなどの既知の結果の位置づけを与えると共に,大域的強Scholz認容と全ての素点における局所Scholz認容が同値であること,および,これによって,局所的研究から導かれる大域的性質についての諸結果を得た。特に,一般の有限次ガロア拡大におけるScholz認容となるmを分岐群から具体的に求める方法を与えた。これら結果については"Scholz admissible modulus of finite Galois extensions of algebraic number fields"と題する論文に纏めた。これは近々発表する予定である。

  • 研究成果

    (1件)

すべて その他

すべて 文献書誌 (1件)

  • [文献書誌] Hisao Yoshihara: "Existence of curves of genus three on a product of two elliptic curves" J.Math.Soc.Japan. (未定).

URL: 

公開日: 1999-03-08   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi