研究課題
この一年間、主に、元の微分作用素はフレッシェ微分可能だが、有限要素法等で離散化する際、微分不可能な項が出てくるような非線形境界値問題に対しての、有限要素解の誤差評価を行った。例えば、流体の方程式であるナビア-ストークス方程式を離散化する際に、流れの上流の情報を下流の情報より重視するといった、いわゆる上流型有限要素法においてこのような状況が出てくる。得られた結果は以下の通り:真の解がある程度滑らかなら、それに対する上流型有限要素法により定義される解は、真の解に近くに一意に存在し、適当な誤差評価を満たす。この結果をまとめた次の論文を準備中で、今年度中に投稿する予定である。N.Mastunaga,T.TsuchiyaNon-Differentiable Finite Element Approximations for Parametrized Strongly Nonlinear Boundary Value Problemsまた、1996年12月に龍谷大学で行われた応用数学合同研究集会で、同じ著者、題目で研究発表を行った。