• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

1997 年度 実績報告書

チョクラルスキー法に関するモデル実験および数値シミュレーション

研究課題

研究課題/領域番号 08650224
研究機関東京電機大学

研究代表者

児山 秀晴  東京電機大学, 工学部, 教授 (90120112)

キーワードチョクラルスキー法 / 熱振動現象 / 可視化 / 数値シミュレーション
研究概要

シリコン融液から単結晶を育成するチョクラルスキー法(Czochralski);CZ法)の回転石英坩堝および回転単結晶をモデル化した実験を試み,融液の流動形態,特に熱振動現象を把握し,積極的にその熱振動を抑え,高品質のシリコン単結晶を製造する応用技術の開発が目的である.平成9年度では,熱振動と融液(モデル)表面の三次元的温度変動の関係を明確にし,代表的な表面温度変動を検出値として,結晶モデルの回転に回転振動を強制的に与え温度振動の抑制を試みることが主なる目的である。
実験および数値シミュレーションより、Rayleigh数(Ra)、Prandtl数(Pr)、Reynolds数(Re)からなる混合パラメータRa/(PrRe^2)を変数とする広範囲な領域で、以下のような研究成果を得ることができた。
融液表面の温度振動が軸対象であることが確認され,平成8年度に開発した二次元数値シミュレーション・コンピュータ・コードの有用性が確認できた。
回転結晶モデルの回転にサイン波状の回転振動Ω_s=Ω_<so>(1+A_ssin(2π/t_pf_st))を与え、温度変動の抑制を試みた。ここで、Ω_<so>,A_s,f_sはそれぞれ、基準の回転角速度、回転振幅、温度変動の周期に対する無次元周波数である。実験では、A_sとf_sを変化させた。Ra/PrRe_S_2<120では、回転振幅の増加に伴い温度変動が大きく抑制され、A_s=0.3、f_s=0.9でほぼ温度変動のない状態となった。従って、周期的な温度変動をもつ強制対流の支配的な流れ場では、その挙動に大きな違いはないため、この領域において結晶に回転振動を与えた場合、同様に変動は抑制されると考えられる。また、結晶の回転振動は温度変動の周期にはほとんど影響を及ぼさないことが明らかになった。実験結果と数値シミュレーション結果によい一致が見られた。

  • 研究成果

    (3件)

すべて その他

すべて 文献書誌 (3件)

  • [文献書誌] Choi,J.I., Kim,S., Sung,H.J., Nakano,A.and Koyama,H.S.: "Transition flow modes in Czochralski convection" Journal of Crystal Growth. 180. 305-314 (1997)

  • [文献書誌] Kim,S., Choi,J.I., Sung,H.J., Nakano,A.and Koyama,H.S.: "Suppression of Temperature Oscillation by Accelerated Crystal" Proceedings of the Tenth International Symposium on Transport Phenomena in Thermal Science and Process Engineering. 1. 85-89 (1997)

  • [文献書誌] Nakano,A., Koyama,H.S.and Sung,H.J.: "Experiments on Czochralski ConvectionModel" Proceedings of the ASME,Ocean Engineering Division. 14. 99-106 (1997)

URL: 

公開日: 1999-03-15   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi