generalized Kac-Moody algebra(=GKM algebra)はR.E.Borcherdsにより近年導入された無限次元リー環の一クラスで、Kac-Moodyリー環の自然な一般化であるが、最近数理物理学との関連で様々な双曲型の格子をroot格子とする(Kac-Moodyリー環ではない)GKM algebraが注目されている。 GKM algebra g(A)の普遍包絡環U(g(A))の(結合代数としての)中心は、g(A)の表現論において重要な役割を果たすものである。g(A)が有限次元半単純リー環の場合には、この中心をg(A)のCartan部分環ηの双対空間η^*上のWeyl群不変な多項式関数環S(η)^Wとして実現するHarish-Chandra準同型の存在及びその性質は、良く調べられている。しかし、g(A)が無限次元の場合には、(Kac-Moodyリー環の場合であっても)このHarish-Chandra準同型についての研究は、V.G.Kac自身によるものの他は、あまり成されていない。 私は、g(A)がKac-Moodyリー環の場合のKacの結果に欠陥を発見し、それを修正して、さらにGKM algebraの場合にまで拡張した。これはGKM algebra g(A)の完備化された普遍包絡環の中心を、η^*の部分領域である(複素化された)Tits coneの内部K上の(ある関数方程式を満たす)正則関数の成す環として実現するというものである。 なお、上記の結果は、論文“On the Harish-Chandra homomorphism for generalized Kac-Moody algebras"としてまとめられ、近く投稿する予定である。
|