• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

1998 年度 実績報告書

グラフに付随した作用素の諸性質とフォン・ノイマン環の間の写像の研究

研究課題

研究課題/領域番号 09640147
研究機関宮城教育大学

研究代表者

武元 英夫  宮城教育大学, 教育学部, 教授 (00004408)

研究分担者 森岡 正臣  宮城教育大学, 教育学部, 助教授 (10174400)
山田 春樹  宮城教育大学, 教育学部, 教授 (00092578)
萬 伸介  宮城教育大学, 教育学部, 教授 (40019849)
白井 進  宮城教育大学, 教育学部, 教授 (30115175)
吾妻 一興  宮城教育大学, 教育学部, 教授 (70005776)
キーワードフォン・ノイマン環 / 冪部分等距離作用素 / 部分等距離作用素 / 数域 / スペクトル半径 / グラフ / クリーネ代数 / ド・モルガン代数
研究概要

今年度に行った研究において2、3の新しい知見が得られた。交付申請時の研究目的・研究実施計画における目的の一つである部分等距離作用素から生成されるフォン・ノイマン環の型の決定に対して、斎藤が挙げていた問題の解決を含む、冪部分等距離作用素から生成されるフォン・ノイマン環の型はI型しかないということが示され、斎藤が推測したすべての型を生成するように冪部分等距離作用素を選べるかということに対して、完全な解答を与えることができた。また、グラフ理論とのつながりでド・モルガン代数、クリーネ代数の特徴づけを与え、その際に導入した新しい概念である不動核はフォン・ノイマン環の間の写像の性質を調べているうちに得られたもので、この概念がさらにフォン・ノイマン環の間の写像の性質を調べる上に重要な役割を持つのではないかと考えられ今後の発展に期待するものである。また、グラフが全閉路的であるための新しい十分条件を与える結果が得られた。ここでの用いたアイディアは、今後、グラフに付随した作用素の研究を進めるうえにおいて有用な役割をもつもので作用素論への応用へと発展される結果であると考える。さらに、無限有向グラフに付随する隣接作用素のスペクトル半径とグラフの性質の関係を与える結果をえることができた。この結果は作用素の関係した指数を調べることによって、隣接作用素のスペクトル半径、数域とノルムの関係を完全に決定したものである。

  • 研究成果

    (6件)

すべて その他

すべて 文献書誌 (6件)

  • [文献書誌] Masaki Takamura: "The numerical radius of an infinite directed regular graph" Mathematica Japonica. 45・2. 337-343 (1997)

  • [文献書誌] Hideo Takemoto: "On a Saito's problem for the generations of von Neumann algebras by powerpartial isometries" Nihonkai Mathematical Journal. 9・1. 97-104 (1998)

  • [文献書誌] Hideo Takemoto: "A characterization of the power partially isometric operators" Bulletin of Miyagi University of Education. 33(印刷中). (1998)

  • [文献書誌] 中島伸之: "不動核によるド・モルガン代数とクリーネ代数の特徴づけ" 日本ファジィ学会誌. 9・6. 988-994 (1997)

  • [文献書誌] 森岡正臣: "グラフが全閉路的であるための新しい十分条件について" 宮城教育大学紀要. 32. 105-110 (1997)

  • [文献書誌] 森岡正臣: "L-代数とストーン代数の特徴づけに関するいくつかの結果について" 宮城教育大学紀要. 33(印刷中). (1998)

URL: 

公開日: 1999-12-11   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi