• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

1998 年度 実績報告書

対称群のスピンモジュラー表現

研究課題

研究課題/領域番号 09740038
研究機関明海大学

研究代表者

中島 達洋  明海大学, 経済学部, 講師 (00286006)

キーワードアフィンリー環 / Q函数(シューアのQ函数) / 対称群 / スピン表現 / 分解行列
研究概要

一般にアフィンリー環D_<l+1>^<(2)>の基本表現のウエイトベクトルはシューアのQ-函数と呼ばれる対称函数によって表される。本研究では、Q-函数をパラメトライズするstrict partitionを変えたときのウエイトの変化を組合せ論的に記述し、各Q-函数のウエイトの特定をおこなった。
ここで得られた結果と「A_1^<(1)>がD_4^<(2)>に埋め込める」という脇本実氏の結果を併せて考えることで、A_1^<(1)>の基本表現の多項式環上の実現としてはこれまで知られていたものとは異なるものを得た。これは、標数2の体上では対称群の通常表現とスピン表現は同じになってしまうという事実の反映であった。2つの実現は簡単な変数変換で移りあうが、Q-函数を変数変換したものを対称群の2-モジュラー指標(ブラウワー指標)から生成した多項式で展開したときの展開係数はベンソンが得たスピン表現の分解行列であることもわかる。特に極大ウエイトベクトルであるQ-函数の場合には、この変数変換により階段型のpartitionで定められるシューア函数に移る。もともとこの変数変換はアフィンリー環の表現の実現をつなぐための形合わせ(頂点作用素の形を合わせる)として得られていたものだが、スピン表現の観点からの表現論的な意味も今回はっきりさせることができた。
こうした結果をふまえて、2-モジュラースピン表現の分解行列を詳しく調べてみたところ、分解行列は各ブロックごとに単因子が2の巾になり、その値はブロックのウエイトで決まっていることが観察された。単因子が2の巾になることは北大の田口・山田両氏により解決されているが、巾の値の決定は今後の課題である。アフィンリー環のウエイト空間の構造との関係からのアプローチを試みたい。

  • 研究成果

    (2件)

すべて その他

すべて 文献書誌 (2件)

  • [文献書誌] 有木進・中島達洋・山田裕史: "Reduced Schur functions and Littlewood-Richardson coefficients" Journal of London Mathematical Society. (印刷中).

  • [文献書誌] 中島達洋・山田裕史: "Schur's Q-functions and affine Lie algebras of type D^<(2)>_<l+1>" Proceedings of FPSAC 98. 497-502 (1998)

URL: 

公開日: 1999-12-11   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi