• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

1997 年度 実績報告書

リーマン面のモジュライ空間の位相的研究

研究課題

研究課題/領域番号 09740043
研究機関北海道大学

研究代表者

河澄 響矢  北海道大学, 大学院・理学研究科, 助教授 (30214646)

キーワードリーマン面 / モジュライ空間 / 特性類 / アラケロフ計量 / 自由群 / 森田・マンフォード類 / マグナス展開
研究概要

今年度は一般森田・マンフォード類の様々な性質の解明に終始した。予想外に難しかったが、同時に様々な数学と深く結び付いていることも明らかになってきた。
正規第3種アーベル微分の擬等角変分を計算し、その3乗のファイバー積分を求めることよって、拡大ジョンソン準同型の微分形式表示を得た。結果としてこのねじれ係数微分形式(Harris-Pulteの)点付き調和体積の第1変分に等しいことがわかった。点なしの調和体積の第1変分はB.Harrisによって既に求められているが、点付きのそれはここで初めて計算された。森田茂之の処方箋にしたがって拡大ジョンソン準同型から普遍リーマン面の相対接束の曲率形式と第1森田・マンフォード類の微分形式表示が得られる。曲率形式の2乗のファイバー積分と後者の微分形式はコホモロガスであるが、微分形式としては別物であることがわかった。さらに、ここで得られた曲率形式とArakelov計量の曲率形式の差はさきほどの差の(2-2g)^(-2)乗倍に一致することがわかった。これらの差を表わすポテンシャルは、概念的には3次元多様体のCasson不変量やリーマン面のFaltings不変量に関係しなければならない。しかし、今年度これを具体的に解明することは出来なかった。来年度の課題である。
自由群のマグナス展開を代数的に整理しなおすことによって自由群の自己同型群上の「一般森田・マンフォード類」の構造を明らかにした。これによって写像類群の一般森田・マンフォード類の縮約公式の代数的別証を得た。自由群の自己同型群の安定コホモロジーとの関連の解明が来年度の課題である。
ファーバー予想への一般森田・マンフォード類を使ったアプローチのために計算機を購入し計算を始めた。

  • 研究成果

    (3件)

すべて その他

すべて 文献書誌 (3件)

  • [文献書誌] N.Kawazumi: "A generalization of the Morita-Mumford classes of extended mdpping class groups for surfaces." Inventiones mathematical. (発表予定).

  • [文献書誌] 河澄響矢: "自由群の自己同型群の上のあるコホモロジー類について" 京都大学数理解析研究所講究録. 1022. 35-42 (1998)

  • [文献書誌] N.Kawazumi: "Homology of hyperelliptic mapping class groups for surface" Toplogy and its application. 76. 203-216 (1997)

URL: 

公開日: 1999-03-15   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi