• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

1998 年度 実績報告書

超ケーラー多様体

研究課題

研究課題/領域番号 09740057
研究機関大阪大学

研究代表者

後藤 竜司  大阪大学, 大学院・理学研究科, 講師 (30252571)

キーワード超ケーラー多様体 / Symplectic多様体
研究概要

論文"On hyper-Kahler manifolds of type A_ifty and D_infty"に置いて筆者はA,D型と呼ばれる4次元の超ケーラー多様体を組織的に構成した。これは、Anderson-Lebum-Kronheimerによる予想に答えたものとなっている。また、超ケーラー多様体を使った3次元多様体の不変量の結果をpreprint"Rozansky-Witten invariants and log Symplectic manifolds"にまとめた。これはRozansky-Wittenによって提唱された超ケーラー多様体による、3次元多様体の不変量を対数的な極を持つSymplectic多様体に拡張したものとなっている。これにより、従来から、懸案であった、モノポールのモジュライ空間に対して、この不変量を構成できることが示される。その後、超ひも理論で開発された、アイデアを超ケーラー多様体にたいして適用し、いくつか結果を得た。例えば、超ケーラー多様体内のラグランジアン部分多様体にsupportを持つ、層のモジュライ空間にはまた、自然な超ケーラー多様体の構造が入ることなどを示した。

  • 研究成果

    (1件)

すべて その他

すべて 文献書誌 (1件)

  • [文献書誌] Ryushi Goto: "On Hyper-Kahlermanifolds of type A∞ and D∞" Communications in Mathematical Physis. 198. 469-491 (1998)

URL: 

公開日: 1999-12-11   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi