• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 課題ページに戻る

1999 年度 実績報告書

偏微分方程式の基本解の研究

研究課題

研究課題/領域番号 10440036
研究機関東北大学

研究代表者

島倉 紀夫  東北大学, 大学院・理学研究科, 教授 (60025393)

研究分担者 猪狩 惺  東北大学, 大学院・理学研究科, 教授 (50004289)
藤家 雪朗  東北大学, 大学院・理学研究科, 講師 (00238536)
高木 泉  東北大学, 大学院・理学研究科, 教授 (40154744)
堀畑 和弘  東北大学, 大学院・理学研究科, 助手 (10229239)
長澤 壮之  東北大学, 大学院・理学研究科, 助教授 (70202223)
キーワード基本解の末尾 / 計量的主要部 / 共形ゲージ変換 / 同点値 / モーメント / 因果的領域 / アダマール係数 / ホイヘンス作用素
研究概要

C^∞-級の係数をもつ2階双曲型偏微分方程式の基本解の強空隙の研究,および幾何学的関連分野の学習を行った.この分野は幾何学の理論を取り入れたP.Guntherおよびそのグループの研究によって大きく進展した.今後の発展にとっては,強空隙をもつような作用素を組織的に構成する手法を見出すことが必要である.研究代表者は,基本解の理論の基礎となっている正規座標系について,その実解析的研究から始めた.
nは2以上の偶数または奇数,γ=(γ_<jk>)^n_<j,K=1>はn次実対称正則行列であるとする.R^nのデカルト座標系x=(x^1,・・・,x^n)をとる.原点の近傍でC^∞級の実数値函数を要素とするn次正方行列函数A(x)=(a_r^s(x))^n_<r,s=1>がベクトル空間Vに属するとは,2つの恒等式a_r^b(x)γ_<bs>=a_s^b(x)γ_<br>およびx^ra_r^s(x)=0をみたすことと定義する.すると,xを正規座標系にもちg_<jk>(0)=γ_<jk>をみたす原点の近傍の擬Riemann計量g_<jk>(x)dx^jdx^kとVの元とが1対1に対応する.これは退化した偏微分方程式に対する理論を用いて得られた定理である.すなわち,Y=x^j∂/(∂x^j)として,jacobi場,Levi-Civita接続,および曲率テンソルの成分用いて3つのn次正方行列函数S(x),N(x),R(x)を定義すると,3つの偏微分方程式YS=-SN,YN+N=N^2+R,YYS+YS=-SRが得られる.x=0ではSは単位行列,NとRはゼロである.S,N,Rの何れか1つを与えると他の2つは上の偏微分方程式を解けば一意的に定まり,とくにS=(σ_j^Bが定まる.すると等式g_<jk>=σ_j^AγAB^σ_k^Bによって計量テンソルg_<jk>が定まる.NとRはVに属するので,Vの1つの元から1つの計量が定まり,逆も成り立つわけである.

  • 研究成果

    (7件)

すべて その他

すべて 文献書誌 (7件)

  • [文献書誌] 島倉紀夫: "Normal coordinate systems from a viewpoiut of real analysis"Tohoku Math. J.. (掲載予定).

  • [文献書誌] 島倉紀夫: "偏微分方程式の基本解"数学. 50-4. 403-420 (1998)

  • [文献書誌] 高木泉,Wei-Ming Ni,Juncheng Wei: "On the location and profile of spike-like layer solutions to a singularly perturbed semilinear Dirichlet problem: Intermediate solutions"Duke Math. J.. 94. 597-618 (1998)

  • [文献書誌] 藤家雪朗: "Semiclassical representation of the scattering matrix by a Feynman integral"Comm. In Math. Physics. 198. 407-425 (1998)

  • [文献書誌] 長澤壮之: "Construction of weak solutions of the Navier-Stokes equations on Riemannian manifold"Advances in Math. Sci.. 9-1. 51-71 (1999)

  • [文献書誌] 堀畑和弘: "The evolution of harmonic maps"Tohoku Math. Publ. 11. 1-111 (1999)

  • [文献書誌] 猪狩 惺: "Real Analysisi-With an Introduction to Wavelet Theory"American Mathematical Society. 256 (1998)

URL: 

公開日: 2001-10-23   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi